Uniformly bounded Nemytskij operators generated by set-valued functions between generalized Hölder function spaces

Janusz Matkowski; Małgorzata Wróbel

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2011)

  • Volume: 31, Issue: 2, page 183-198
  • ISSN: 1509-9407

Abstract

top
We prove that the generator of any uniformly bounded set-valued Nemytskij operator acting between generalized Hölder function metric spaces, with nonempty compact and convex values is an affine function with respect to the function variable.

How to cite

top

Janusz Matkowski, and Małgorzata Wróbel. "Uniformly bounded Nemytskij operators generated by set-valued functions between generalized Hölder function spaces." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 31.2 (2011): 183-198. <http://eudml.org/doc/271174>.

@article{JanuszMatkowski2011,
abstract = {We prove that the generator of any uniformly bounded set-valued Nemytskij operator acting between generalized Hölder function metric spaces, with nonempty compact and convex values is an affine function with respect to the function variable.},
author = {Janusz Matkowski, Małgorzata Wróbel},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {Nemytskij composition operator; uniformly bounded operator; set-valued function; generalized Hölder function metric space; superposition operator},
language = {eng},
number = {2},
pages = {183-198},
title = {Uniformly bounded Nemytskij operators generated by set-valued functions between generalized Hölder function spaces},
url = {http://eudml.org/doc/271174},
volume = {31},
year = {2011},
}

TY - JOUR
AU - Janusz Matkowski
AU - Małgorzata Wróbel
TI - Uniformly bounded Nemytskij operators generated by set-valued functions between generalized Hölder function spaces
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2011
VL - 31
IS - 2
SP - 183
EP - 198
AB - We prove that the generator of any uniformly bounded set-valued Nemytskij operator acting between generalized Hölder function metric spaces, with nonempty compact and convex values is an affine function with respect to the function variable.
LA - eng
KW - Nemytskij composition operator; uniformly bounded operator; set-valued function; generalized Hölder function metric space; superposition operator
UR - http://eudml.org/doc/271174
ER -

References

top
  1. [1] J. Appell and P.P. Zabrejko, Nonlinear Superposition Operators, Cambridge University Press, 1990. doi:10.1017/CBO9780511897450 Zbl0701.47041
  2. [2] A. Azócar, J.A. Guerrero, J. Matkowski and N. Merentes, Uniformly continuous set-valued composition operators in the space of continuous functions of bounded variation in the sense of Wiener, Opuscula Math. 30 (2010), 53-60. Zbl1216.47090
  3. [3] V.V. Chistyakov, Lipschitzian superposition operators between spaces of functions of bounded generalized variation with weight, J. Appl. Anal. 6 (2000), 173-186. doi:10.1515/JAA.2000.173 
  4. [4] J.A. Guerrero, H. Leiva, J. Matkowski and N. Merentes, Uniformly continuous composition operators in the space of bounded φ-variation functions, Nonlinear Anal. 72 (2010), 3119-3123. doi:10.1016/j.na.2009.11.051 Zbl1225.47078
  5. [5] J.J. Ludew, On Lipschitzian operators of substitution generated by set-valued functions, Opuscula Math. 27 (1) (2007), 13-24. Zbl1160.47047
  6. [6] J. Matkowski, Functional equations and Nemytskij operators, Funkc. Ekvacioj Ser. Int. 25 (1982), 127-132. 
  7. [7] J. Matkowski, Lipschitzian composition operators in some function spaces, Nonlin. Anal. Theory Meth. Appl. 30 (2) (1997), 719-726. doi:10.1016/S0362-546X(96)00287-8 
  8. [8] J. Matkowski, Remarks on Lipschitzian mappings and some fixed point theorems, Banach J. Math. Anal. 2 (2007), 237-244 (electronic), www.math-analysis.org. Zbl1146.47034
  9. [9] J. Matkowski, Uniformly continuous superposition operators in the spaces of differentiable functions and absolutely continuous functions, Internat. Ser. Numer. Math. 157 (2008), 155-155. Zbl1266.47082
  10. [10] J. Matkowski, Uniformly continuous superposition operators in the space of Hölder functions, J. Math. Anal. Appl. 359 (2009), 56-61. doi:10.1016/j.jmaa.2009.05.020 Zbl1173.47043
  11. [11] J. Matkowski, Uniformly continuous superposition operators in the spaces of bounded variation functions, Math. Nachr. 283 (7) (2010), 1060-1064. Zbl1235.47052
  12. [12] J. Matkowski, Uniformly bounded composition operators between general Lipschitz function normed spaces, (accepted), Top. Math. Nonl. Anal. Zbl1272.47070
  13. [13] J. Matkowski and J. Miś, On a charakterization of Lipschitzian operators of substitution in the space BV[a,b], Math. Nachr. 117 (1984), 155-159. doi:10.1002/mana.3211170111 Zbl0566.47033
  14. [14] K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Naukowe Politechniki Łódzkiej, Mat. 559, Rozprawy Naukowe 114, 1989. 
  15. [15] A. Smajdor and W. Smajdor, Jensen equation and Nemytskii operator for set-valued functions, Rad. Math. 5 (1989), 311-320. Zbl0696.47057
  16. [16] W. Smajdor, Note on Jensen and Pexider functional equations, Demonstratio Math. 32 (1999), 363-376. Zbl0938.39026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.