# Detecting codimension one manifold factors with the piecewise disjoint arc-disk property and related properties

Denise Halverson; Dušan Repovš

Open Mathematics (2013)

- Volume: 11, Issue: 11, page 1932-1948
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topDenise Halverson, and Dušan Repovš. "Detecting codimension one manifold factors with the piecewise disjoint arc-disk property and related properties." Open Mathematics 11.11 (2013): 1932-1948. <http://eudml.org/doc/269771>.

@article{DeniseHalverson2013,

abstract = {We show that all finite-dimensional resolvable generalized manifolds with the piecewise disjoint arc-disk property are codimension one manifold factors. We then show how the piecewise disjoint arc-disk property and other general position properties that detect codimension one manifold factors are related. We also note that in every example presently known to the authors of a codimension one manifold factor of dimension n ≥ 4 determined by general position properties, the piecewise disjoint arc-disk property is satisfied.},

author = {Denise Halverson, Dušan Repovš},

journal = {Open Mathematics},

keywords = {Piecewise disjoint arc-disk property; General position; Codimension one manifold factor; Generalized Moore Problem; Totally wild flow; Ghastly generalized manifold; Plentiful 2-manifolds property; 0-stitched disks; δ-fractured maps; Fractured maps property; Crinkled ribbons property; Fuzzy ribbons property; Disjoint homotopies property; Disjoint topographies property; Disjoint concordances; piecewise disjoint arc-disk property; general position; codimension one manifold factor; generalized Moore problem; totally wild flow; ghastly generalized manifold; plentiful 2-manifolds property; -fractured maps; fractured maps property; crinkled ribbons property; fuzzy ribbons property; disjoint homotopies property; disjoint topographies property; disjoint concordances},

language = {eng},

number = {11},

pages = {1932-1948},

title = {Detecting codimension one manifold factors with the piecewise disjoint arc-disk property and related properties},

url = {http://eudml.org/doc/269771},

volume = {11},

year = {2013},

}

TY - JOUR

AU - Denise Halverson

AU - Dušan Repovš

TI - Detecting codimension one manifold factors with the piecewise disjoint arc-disk property and related properties

JO - Open Mathematics

PY - 2013

VL - 11

IS - 11

SP - 1932

EP - 1948

AB - We show that all finite-dimensional resolvable generalized manifolds with the piecewise disjoint arc-disk property are codimension one manifold factors. We then show how the piecewise disjoint arc-disk property and other general position properties that detect codimension one manifold factors are related. We also note that in every example presently known to the authors of a codimension one manifold factor of dimension n ≥ 4 determined by general position properties, the piecewise disjoint arc-disk property is satisfied.

LA - eng

KW - Piecewise disjoint arc-disk property; General position; Codimension one manifold factor; Generalized Moore Problem; Totally wild flow; Ghastly generalized manifold; Plentiful 2-manifolds property; 0-stitched disks; δ-fractured maps; Fractured maps property; Crinkled ribbons property; Fuzzy ribbons property; Disjoint homotopies property; Disjoint topographies property; Disjoint concordances; piecewise disjoint arc-disk property; general position; codimension one manifold factor; generalized Moore problem; totally wild flow; ghastly generalized manifold; plentiful 2-manifolds property; -fractured maps; fractured maps property; crinkled ribbons property; fuzzy ribbons property; disjoint homotopies property; disjoint topographies property; disjoint concordances

UR - http://eudml.org/doc/269771

ER -

## References

top- [1] Banakh T., Valov V., General position properties in fiberwise geometric topology, preprint available at http://arxiv.org/abs/1001.2494 Zbl1301.57019
- [2] Borel A., Seminar on Transformation Groups, Ann. of Math. Stud., 46, Princeton University Press, Princeton, 1960 Zbl0091.37202
- [3] Cannon J.W., Daverman R.J., A totally wild flow, Indiana Univ. Math. J., 1981, 30(3), 371–387 http://dx.doi.org/10.1512/iumj.1981.30.30029 Zbl0432.58018
- [4] Daverman R.J., Products of cell-like decomposition, Topology Appl., 1980, 11(2), 121–139 http://dx.doi.org/10.1016/0166-8641(80)90002-4
- [5] Daverman R.J., Detecting the disjoint disks property, Pacific J. Math., 1981, 93(2), 277–298 http://dx.doi.org/10.2140/pjm.1981.93.277 Zbl0415.57007
- [6] Daverman R.J., Decompositions of Manifolds, Pure Appl. Math., 124, Academic Press, Orlando, 1986 Zbl0608.57002
- [7] Daverman R.J., Halverson D., Path concordances as detectors of codimension-one manifold factors, Exotic Homology Manifolds, Oberwolfach, June 29–July 5, 2003, Geom. Topol. Monogr., 9, Geometry & Topology Publications, Coventry, 2006, 7–15 Zbl1111.57017
- [8] Daverman R.J., Halverson D.M., The cell-like approximation theorem in dimension 5, Fund. Math., 2007, 197, 81–121 http://dx.doi.org/10.4064/fm197-0-5 Zbl1133.57013
- [9] Daverman R.J., Walsh J.J., A ghastly generalized n-manifold, Illinois J. Math., 1981, 25(4), 555–576 Zbl0478.57014
- [10] Edwards R.D., The topology of manifolds and cell-like maps, Proceedings of the International Congress of Mathematicians, Helsinki, August 15-23, 1978, Academia Scientiarum Fennica, Helsinki, 1980, 111–127
- [11] Halverson D.M., Detecting codimension one manifold factors with the disjoint homotopies property, Topology Appl., 2002, 117(3), 231–258 http://dx.doi.org/10.1016/S0166-8641(01)00022-0 Zbl0992.57024
- [12] Halverson D.M., 2-ghastly spaces with the disjoint homotopies property: the method of fractured maps, Topology Appl., 2004, 138(1–3), 277–286 http://dx.doi.org/10.1016/j.topol.2003.08.016 Zbl1049.57015
- [13] Halverson D.M., Detecting codimension one manifold factors with 0-stitched disks, Topology Appl., 2007, 154(9), 1993–1998 http://dx.doi.org/10.1016/j.topol.2007.02.006
- [14] Halverson D.M., Repovš D., Detecting codimension one manifold factors with topographical techniques, Topology Appl., 2009, 156(17), 2870–2880 http://dx.doi.org/10.1016/j.topol.2009.08.023 Zbl1215.57009
- [15] Halverson D.M., Repovš D., A survey on the generalized R. L. Moore Problem, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 2011, 58, 175–191
- [16] Halverson D.M., Repovš D., Decompositions of ℝ, n ≥ 4, into convex sets generate codimension 1 manifold factors, Mediterr. J. Math., 2013, 10(2), 1101–1106 http://dx.doi.org/10.1007/s00009-012-0197-1 Zbl1282.57028
- [17] Mitchell W.J.R., Repovš D., Topology of cell-like mappings, Rend. Sem. Fac. Sci. Univ. Cagliari, 1988, 58(suppl.), 265–300
- [18] Moore R.L., Concerning upper semi-continuous collections of continua which do not separate a given continuum, Proc. Natl. Acad. Sci. USA, 1924, 10(8), 356–360 http://dx.doi.org/10.1073/pnas.10.8.356 Zbl50.0130.04
- [19] Moore R.L., Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc., 1925, 27(4), 416–428 http://dx.doi.org/10.1090/S0002-9947-1925-1501320-8 Zbl51.0464.03
- [20] Rourke C.P., Sanderson B.J., Introduction to Piecewise-Linear Topology, Ergeb. Math. Grenzgeb., 69, Springer, New York-Heidelberg, 1972 http://dx.doi.org/10.1007/978-3-642-81735-9 Zbl0254.57010