Rationality of the quotient of ℙ2 by finite group of automorphisms over arbitrary field of characteristic zero
Open Mathematics (2014)
- Volume: 12, Issue: 2, page 229-239
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAndrey Trepalin. "Rationality of the quotient of ℙ2 by finite group of automorphisms over arbitrary field of characteristic zero." Open Mathematics 12.2 (2014): 229-239. <http://eudml.org/doc/269772>.
@article{AndreyTrepalin2014,
abstract = {Let \[\mathbb \{k\}\]
be a field of characteristic zero and G be a finite group of automorphisms of projective plane over \[\mathbb \{k\}\]
. Castelnuovo’s criterion implies that the quotient of projective plane by G is rational if the field \[\mathbb \{k\}\]
is algebraically closed. In this paper we prove that \[\{\{\mathbb \{P\}\_\mathbb \{k\}^2 \} \mathord \{\left\bad. \{\vphantom\{\{\mathbb \{P\}\_\mathbb \{k\}^2 \} G\}\} \right. \hspace\{0.0pt\}\} G\}\]
is rational for an arbitrary field \[\mathbb \{k\}\]
of characteristic zero.},
author = {Andrey Trepalin},
journal = {Open Mathematics},
keywords = {Noether problem; Rationality; del Pezzo surfaces; Minimal Model Program; Cremona group; rationality; minimal model program},
language = {eng},
number = {2},
pages = {229-239},
title = {Rationality of the quotient of ℙ2 by finite group of automorphisms over arbitrary field of characteristic zero},
url = {http://eudml.org/doc/269772},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Andrey Trepalin
TI - Rationality of the quotient of ℙ2 by finite group of automorphisms over arbitrary field of characteristic zero
JO - Open Mathematics
PY - 2014
VL - 12
IS - 2
SP - 229
EP - 239
AB - Let \[\mathbb {k}\]
be a field of characteristic zero and G be a finite group of automorphisms of projective plane over \[\mathbb {k}\]
. Castelnuovo’s criterion implies that the quotient of projective plane by G is rational if the field \[\mathbb {k}\]
is algebraically closed. In this paper we prove that \[{{\mathbb {P}_\mathbb {k}^2 } \mathord {\left\bad. {\vphantom{{\mathbb {P}_\mathbb {k}^2 } G}} \right. \hspace{0.0pt}} G}\]
is rational for an arbitrary field \[\mathbb {k}\]
of characteristic zero.
LA - eng
KW - Noether problem; Rationality; del Pezzo surfaces; Minimal Model Program; Cremona group; rationality; minimal model program
UR - http://eudml.org/doc/269772
ER -
References
top- [1] Ahmad H., Hajja M., Kang M., Rationality of some projective linear actions, J. Algebra, 2000, 228(2), 643–658 http://dx.doi.org/10.1006/jabr.2000.8292 Zbl0993.12003
- [2] Artebani M., Dolgachev I., The Hesse pencil of plane cubic curves, Enseign. Math., 2009, 55(3–4), 235–273 Zbl1192.14024
- [3] Blichfeldt H.F., Finite Collineation Groups, University of Chicago Press, Chicago, 1917
- [4] Bogomolov F.A., The Brauer group of quotient spaces by linear group actions, Math. USSR-Izv., 1988, 30(3), 455–485 http://dx.doi.org/10.1070/IM1988v030n03ABEH001024 Zbl0679.14025
- [5] Bogomolov F.A., Katsylo P.I., Rationality of some quotient varieties, Mat. Sb. (N.S.), 1985, 126(168)(4), 584–589 (in Russian) Zbl0591.14040
- [6] Borel A., Linear Algebraic Groups, 2nd ed., Grad. Texts in Math., 126, Springer, New York, 1991 http://dx.doi.org/10.1007/978-1-4612-0941-6
- [7] Coray D.F., Tsfasman M.A., Arithmetic on singular Del Pezzo surfaces, Proc. Lond. Math. Soc., 1988, 57(1), 25–87 http://dx.doi.org/10.1112/plms/s3-57.1.25 Zbl0653.14018
- [8] Dolgachev I.V., Iskovskikh V.A., Finite subgroups of the plane Cremona group, In: Algebra, Arithmetic, and Geometry: in Honor of Yu.I. Manin, I, Progr. Math., 269, Birkhäuser, Basel, 2009, 443–548 http://dx.doi.org/10.1007/978-0-8176-4745-2_11 Zbl1219.14015
- [9] Dolgachev I.V., Iskovskikh V.A., On elements of prime order in the plane Cremona group over a perfect field, Int. Math. Res. Not. IMRN, 2009, 18, 3467–3485 Zbl1188.14007
- [10] Endô S., Miyata T., Invariants of finite abelian groups, J. Math. Soc. Japan, 1973, 25, 7–26 http://dx.doi.org/10.2969/jmsj/02510007 Zbl0245.20007
- [11] Hajja M., Rationality of finite groups of monomial automorphisms of k(x; y), J. Algebra, 1987, 109(1), 46–51 http://dx.doi.org/10.1016/0021-8693(87)90162-1
- [12] Hoshi A., Kang M., Unramified Brauer groups for groups of order p5, preprint aviable at http://arxiv.org/abs/1109.2966
- [13] Iskovskikh V.A., Minimal models of rational surfaces over arbitrary fields, Math. USSR-Izv., 1980, 14(1), 17–39 http://dx.doi.org/10.1070/IM1980v014n01ABEH001064 Zbl0427.14011
- [14] Iskovskikh V.A., Factorization of birational mappings of rational surfaces from the point of view of Mori theory, Russian Math. Surveys, 1996, 51(4), 585–652 http://dx.doi.org/10.1070/RM1996v051n04ABEH002962 Zbl0914.14005
- [15] Lenstra H.W. Jr., Rational functions invariant under a finite abelian group, Invent. Math., 1974, 25(3–4), 299–325 http://dx.doi.org/10.1007/BF01389732
- [16] Manin Ju.I., Rational surfaces over perfect fields II, Mat. Sb., 1967, 1(2), 141–168 http://dx.doi.org/10.1070/SM1967v001n02ABEH001972 Zbl0182.23701
- [17] Manin Yu.I., Cubic Forms: Algebra, Geometry, Arithmetic, North-Holland Math. Library, 4, North-Holland, Amsterdam-London, 1974
- [18] Miller G.A., Blichfeldt H.F., Dickson L.E., Theory and Applications of Finite Groups, Dover, New York, 1961 Zbl0098.25103
- [19] Moravec P., Unramified Brauer groups of finite and infinite groups, Amer. J. Math., 2012, 134(6), 1679–1704 http://dx.doi.org/10.1353/ajm.2012.0046 Zbl06215444
- [20] Noether E., Rationale Functionenkörper, Jahresbericht der Deutschen Mathematiker-Vereinigung, 1913, 22, 316–319
- [21] Prokhorov Yu.G., Fields of invariants of finite linear groups, In: Cohomological and Geometric Approaches to Rationality Problems, Progr. Math., 282, Birkhäuser, Boston, 2010, 245–273 http://dx.doi.org/10.1007/978-0-8176-4934-0_10
- [22] Saltman D.J., Noether’s problem over an algebraically closed field, Invent. Math., 1984, 77(1), 71–84 http://dx.doi.org/10.1007/BF01389135 Zbl0546.14014
- [23] Shephard G.C., Todd J.A., Finite unitary reflection groups, Canadian J. Math., 1954, 6, 274–304 http://dx.doi.org/10.4153/CJM-1954-028-3 Zbl0055.14305
- [24] Swan R.G., Invariant rational functions and a problem of Steenrod, Invent. Math., 1969, 7, 148–158 http://dx.doi.org/10.1007/BF01389798 Zbl0186.07601
- [25] Voskresenskii V.E., On two-dimensional algebraic tori II, Math. USSR-Izv., 1967, 1(3), 691–696 http://dx.doi.org/10.1070/IM1967v001n03ABEH000580 Zbl0162.52502
- [26] Voskresenskii V.E., Fields of invariants for abelian groups, Russian Math. Surveys, 1973, 28(4), 79–105 http://dx.doi.org/10.1070/RM1973v028n04ABEH001594 Zbl0289.14006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.