Rationality of the quotient of ℙ2 by finite group of automorphisms over arbitrary field of characteristic zero

Andrey Trepalin

Open Mathematics (2014)

  • Volume: 12, Issue: 2, page 229-239
  • ISSN: 2391-5455

Abstract

top
Let 𝕜 be a field of characteristic zero and G be a finite group of automorphisms of projective plane over 𝕜 . Castelnuovo’s criterion implies that the quotient of projective plane by G is rational if the field 𝕜 is algebraically closed. In this paper we prove that 𝕜 2 𝕜 2 G G is rational for an arbitrary field 𝕜 of characteristic zero.

How to cite

top

Andrey Trepalin. "Rationality of the quotient of ℙ2 by finite group of automorphisms over arbitrary field of characteristic zero." Open Mathematics 12.2 (2014): 229-239. <http://eudml.org/doc/269772>.

@article{AndreyTrepalin2014,
abstract = {Let \[\mathbb \{k\}\] be a field of characteristic zero and G be a finite group of automorphisms of projective plane over \[\mathbb \{k\}\] . Castelnuovo’s criterion implies that the quotient of projective plane by G is rational if the field \[\mathbb \{k\}\] is algebraically closed. In this paper we prove that \[\{\{\mathbb \{P\}\_\mathbb \{k\}^2 \} \mathord \{\left\bad. \{\vphantom\{\{\mathbb \{P\}\_\mathbb \{k\}^2 \} G\}\} \right. \hspace\{0.0pt\}\} G\}\] is rational for an arbitrary field \[\mathbb \{k\}\] of characteristic zero.},
author = {Andrey Trepalin},
journal = {Open Mathematics},
keywords = {Noether problem; Rationality; del Pezzo surfaces; Minimal Model Program; Cremona group; rationality; minimal model program},
language = {eng},
number = {2},
pages = {229-239},
title = {Rationality of the quotient of ℙ2 by finite group of automorphisms over arbitrary field of characteristic zero},
url = {http://eudml.org/doc/269772},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Andrey Trepalin
TI - Rationality of the quotient of ℙ2 by finite group of automorphisms over arbitrary field of characteristic zero
JO - Open Mathematics
PY - 2014
VL - 12
IS - 2
SP - 229
EP - 239
AB - Let \[\mathbb {k}\] be a field of characteristic zero and G be a finite group of automorphisms of projective plane over \[\mathbb {k}\] . Castelnuovo’s criterion implies that the quotient of projective plane by G is rational if the field \[\mathbb {k}\] is algebraically closed. In this paper we prove that \[{{\mathbb {P}_\mathbb {k}^2 } \mathord {\left\bad. {\vphantom{{\mathbb {P}_\mathbb {k}^2 } G}} \right. \hspace{0.0pt}} G}\] is rational for an arbitrary field \[\mathbb {k}\] of characteristic zero.
LA - eng
KW - Noether problem; Rationality; del Pezzo surfaces; Minimal Model Program; Cremona group; rationality; minimal model program
UR - http://eudml.org/doc/269772
ER -

References

top
  1. [1] Ahmad H., Hajja M., Kang M., Rationality of some projective linear actions, J. Algebra, 2000, 228(2), 643–658 http://dx.doi.org/10.1006/jabr.2000.8292 Zbl0993.12003
  2. [2] Artebani M., Dolgachev I., The Hesse pencil of plane cubic curves, Enseign. Math., 2009, 55(3–4), 235–273 Zbl1192.14024
  3. [3] Blichfeldt H.F., Finite Collineation Groups, University of Chicago Press, Chicago, 1917 
  4. [4] Bogomolov F.A., The Brauer group of quotient spaces by linear group actions, Math. USSR-Izv., 1988, 30(3), 455–485 http://dx.doi.org/10.1070/IM1988v030n03ABEH001024 Zbl0679.14025
  5. [5] Bogomolov F.A., Katsylo P.I., Rationality of some quotient varieties, Mat. Sb. (N.S.), 1985, 126(168)(4), 584–589 (in Russian) Zbl0591.14040
  6. [6] Borel A., Linear Algebraic Groups, 2nd ed., Grad. Texts in Math., 126, Springer, New York, 1991 http://dx.doi.org/10.1007/978-1-4612-0941-6 
  7. [7] Coray D.F., Tsfasman M.A., Arithmetic on singular Del Pezzo surfaces, Proc. Lond. Math. Soc., 1988, 57(1), 25–87 http://dx.doi.org/10.1112/plms/s3-57.1.25 Zbl0653.14018
  8. [8] Dolgachev I.V., Iskovskikh V.A., Finite subgroups of the plane Cremona group, In: Algebra, Arithmetic, and Geometry: in Honor of Yu.I. Manin, I, Progr. Math., 269, Birkhäuser, Basel, 2009, 443–548 http://dx.doi.org/10.1007/978-0-8176-4745-2_11 Zbl1219.14015
  9. [9] Dolgachev I.V., Iskovskikh V.A., On elements of prime order in the plane Cremona group over a perfect field, Int. Math. Res. Not. IMRN, 2009, 18, 3467–3485 Zbl1188.14007
  10. [10] Endô S., Miyata T., Invariants of finite abelian groups, J. Math. Soc. Japan, 1973, 25, 7–26 http://dx.doi.org/10.2969/jmsj/02510007 Zbl0245.20007
  11. [11] Hajja M., Rationality of finite groups of monomial automorphisms of k(x; y), J. Algebra, 1987, 109(1), 46–51 http://dx.doi.org/10.1016/0021-8693(87)90162-1 
  12. [12] Hoshi A., Kang M., Unramified Brauer groups for groups of order p5, preprint aviable at http://arxiv.org/abs/1109.2966 
  13. [13] Iskovskikh V.A., Minimal models of rational surfaces over arbitrary fields, Math. USSR-Izv., 1980, 14(1), 17–39 http://dx.doi.org/10.1070/IM1980v014n01ABEH001064 Zbl0427.14011
  14. [14] Iskovskikh V.A., Factorization of birational mappings of rational surfaces from the point of view of Mori theory, Russian Math. Surveys, 1996, 51(4), 585–652 http://dx.doi.org/10.1070/RM1996v051n04ABEH002962 Zbl0914.14005
  15. [15] Lenstra H.W. Jr., Rational functions invariant under a finite abelian group, Invent. Math., 1974, 25(3–4), 299–325 http://dx.doi.org/10.1007/BF01389732 
  16. [16] Manin Ju.I., Rational surfaces over perfect fields II, Mat. Sb., 1967, 1(2), 141–168 http://dx.doi.org/10.1070/SM1967v001n02ABEH001972 Zbl0182.23701
  17. [17] Manin Yu.I., Cubic Forms: Algebra, Geometry, Arithmetic, North-Holland Math. Library, 4, North-Holland, Amsterdam-London, 1974 
  18. [18] Miller G.A., Blichfeldt H.F., Dickson L.E., Theory and Applications of Finite Groups, Dover, New York, 1961 Zbl0098.25103
  19. [19] Moravec P., Unramified Brauer groups of finite and infinite groups, Amer. J. Math., 2012, 134(6), 1679–1704 http://dx.doi.org/10.1353/ajm.2012.0046 Zbl06215444
  20. [20] Noether E., Rationale Functionenkörper, Jahresbericht der Deutschen Mathematiker-Vereinigung, 1913, 22, 316–319 
  21. [21] Prokhorov Yu.G., Fields of invariants of finite linear groups, In: Cohomological and Geometric Approaches to Rationality Problems, Progr. Math., 282, Birkhäuser, Boston, 2010, 245–273 http://dx.doi.org/10.1007/978-0-8176-4934-0_10 
  22. [22] Saltman D.J., Noether’s problem over an algebraically closed field, Invent. Math., 1984, 77(1), 71–84 http://dx.doi.org/10.1007/BF01389135 Zbl0546.14014
  23. [23] Shephard G.C., Todd J.A., Finite unitary reflection groups, Canadian J. Math., 1954, 6, 274–304 http://dx.doi.org/10.4153/CJM-1954-028-3 Zbl0055.14305
  24. [24] Swan R.G., Invariant rational functions and a problem of Steenrod, Invent. Math., 1969, 7, 148–158 http://dx.doi.org/10.1007/BF01389798 Zbl0186.07601
  25. [25] Voskresenskii V.E., On two-dimensional algebraic tori II, Math. USSR-Izv., 1967, 1(3), 691–696 http://dx.doi.org/10.1070/IM1967v001n03ABEH000580 Zbl0162.52502
  26. [26] Voskresenskii V.E., Fields of invariants for abelian groups, Russian Math. Surveys, 1973, 28(4), 79–105 http://dx.doi.org/10.1070/RM1973v028n04ABEH001594 Zbl0289.14006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.