Seshadri positive submanifolds of polarized manifolds
Lucian Bădescu; Mauro Beltrametti
Open Mathematics (2013)
- Volume: 11, Issue: 3, page 447-476
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topLucian Bădescu, and Mauro Beltrametti. "Seshadri positive submanifolds of polarized manifolds." Open Mathematics 11.3 (2013): 447-476. <http://eudml.org/doc/269775>.
@article{LucianBădescu2013,
abstract = {Let Y be a submanifold of dimension y of a polarized complex manifold (X, A) of dimension k ≥ 2, with 1 ≤ y ≤ k−1. We define and study two positivity conditions on Y in (X, A), called Seshadri A-bigness and (a stronger one) Seshadri A-ampleness. In this way we get a natural generalization of the theory initiated by Paoletti in [Paoletti R., Seshadri positive curves in a smooth projective 3-fold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1996, 6(4), 259–274] (which corresponds to the case (k, y) = (3, 1)) and subsequently generalized and completed in [Bădescu L., Beltrametti M.C., Francia P., Positive curves in polarized manifolds, Manuscripta Math, 1997, 92(3), 369–388] (regarding curves in a polarized manifold of arbitrary dimension). The theory presented here, which is new even if y = k − 1, is motivated by a reasonably large area of examples.},
author = {Lucian Bădescu, Mauro Beltrametti},
journal = {Open Mathematics},
keywords = {Seshadri constant; Seshadri A-big; Seshadri A-ample; Variety defined in a given degree; Formal rational functions; Cohomological dimension; formal rational functions},
language = {eng},
number = {3},
pages = {447-476},
title = {Seshadri positive submanifolds of polarized manifolds},
url = {http://eudml.org/doc/269775},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Lucian Bădescu
AU - Mauro Beltrametti
TI - Seshadri positive submanifolds of polarized manifolds
JO - Open Mathematics
PY - 2013
VL - 11
IS - 3
SP - 447
EP - 476
AB - Let Y be a submanifold of dimension y of a polarized complex manifold (X, A) of dimension k ≥ 2, with 1 ≤ y ≤ k−1. We define and study two positivity conditions on Y in (X, A), called Seshadri A-bigness and (a stronger one) Seshadri A-ampleness. In this way we get a natural generalization of the theory initiated by Paoletti in [Paoletti R., Seshadri positive curves in a smooth projective 3-fold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1996, 6(4), 259–274] (which corresponds to the case (k, y) = (3, 1)) and subsequently generalized and completed in [Bădescu L., Beltrametti M.C., Francia P., Positive curves in polarized manifolds, Manuscripta Math, 1997, 92(3), 369–388] (regarding curves in a polarized manifold of arbitrary dimension). The theory presented here, which is new even if y = k − 1, is motivated by a reasonably large area of examples.
LA - eng
KW - Seshadri constant; Seshadri A-big; Seshadri A-ample; Variety defined in a given degree; Formal rational functions; Cohomological dimension; formal rational functions
UR - http://eudml.org/doc/269775
ER -
References
top- [1] Altman A., Kleiman S., Introduction to Grothendieck Duality Theory, Lecture Notes in Math., 146, Springer, Berlin- New York, 1970 http://dx.doi.org/10.1007/BFb0060933[Crossref] Zbl0215.37201
- [2] Bădescu L., Infinitesimal deformations of negative weights and hyperplane sections, In: Algebraic Geometry, L’Aquila, May 30–June 4, 1988, Lecture Notes in Math., 1417, Springer, Berlin, 1990, 1–22
- [3] Bădescu L., Algebraic Surfaces, Universitext, Springer, New York, 2001
- [4] Bădescu L., Projective Geometry and Formal Geometry, IMPAN Monogr. Mat. (N.S.), 65, Birkhäuser, Basel, 2004
- [5] Bădescu L., Beltrametti M.C., Francia P., Positive curves in polarized manifolds, Manuscripta Math, 1997, 92(3), 369–388 http://dx.doi.org/10.1007/BF02678200[Crossref] Zbl0899.14009
- [6] Bădescu L., Valla G., Grothendieck-Lefschetz theory, set-theoretic complete intersections and rational normal scrolls, J. Algebra, 2010, 324(7), 1636–1655 http://dx.doi.org/10.1016/j.jalgebra.2010.05.034[WoS][Crossref] Zbl1211.14055
- [7] Barth W., Hulek K., Peters C.A.M., Van de Ven A., Compact Complex Surfaces, 2nd ed., Ergeb. Math. Grenzgeb., 4, Springer, Berlin, 2004 Zbl1036.14016
- [8] Beltrametti M.C., Sommese A.J., Remarks on numerically positive and big line bundles, In: Projective Geometry with Applications, Lecture Notes in Pure and Appl. Math., 166, Marcel Dekker, New York, 1994, 9–18 Zbl0834.14008
- [9] Beltrametti M.C., Sommese A.J., Notes on embeddings of blowups, J. Algebra, 1996, 186(3), 861–871 http://dx.doi.org/10.1006/jabr.1996.0399[Crossref] Zbl0881.14007
- [10] Bloch S., Gieseker D., The positivity of the Chern classes of an ample vector bundle, Invent. Math., 1971, 12, 112–117 http://dx.doi.org/10.1007/BF01404655[Crossref] Zbl0212.53502
- [11] Fulton W., Intersection Theory, Ergeb. Math. Grenzgeb., 2, Springer, Berlin, 1984 Zbl0541.14005
- [12] Fulton W., Hanssen J., A connectedness theorem for proper varieties, with applications to intersections and singularities of mappings, Ann. of Math., 1979, 110(1), 159–166 http://dx.doi.org/10.2307/1971249[Crossref] Zbl0389.14002
- [13] Fulton W., Lazarsfeld R., On the connectedness of degeneracy loci and special divisors, Acta Math., 1981, 146(3–4), 271–283 http://dx.doi.org/10.1007/BF02392466[Crossref] Zbl0469.14018
- [14] Fulton W., Lazarsfeld R., Positive polynomials for ample vector bundles, Ann. of Math., 1983, 118(1), 35–60 http://dx.doi.org/10.2307/2006953[Crossref] Zbl0537.14009
- [15] Griffiths Ph., Harris J., Principles of Algebraic Geometry, Pure and Applied Mathematics, John Wiley & Sons, New York, 1978 Zbl0408.14001
- [16] Grothendieck A., Éléments de géométrie algébrique II, Inst. Hautes Études Sci. Publ. Math., 1961, 8, 5–222 http://dx.doi.org/10.1007/BF02699291[Crossref]
- [17] Grothendieck A., Éléments de géométrie algébrique III (première partie), Inst. Hautes Études Sci. Publ. Math., 1961, 11, 5–167 http://dx.doi.org/10.1007/BF02684273[Crossref]
- [18] Grothendieck A., Éléments de géométrie algébrique IV (première partie), Inst. Hautes Études Sci. Publ. Math., 1964, 20, 5–259 http://dx.doi.org/10.1007/BF02684747[Crossref]
- [19] Grothendieck A., Revêtements Étales et Groupe Fondamental, I, Lecture Notes in Math., 224, Springer, New York, 1971
- [20] Hartshorne R., Ample vector bundles, Inst. Hautes Études Sci. Publ. Math., 1966, 29, 63–94 Zbl0173.49003
- [21] Hartshorne R., Cohomological dimension of algebraic varieties, Ann. of Math., 1968, 88, 403–450 http://dx.doi.org/10.2307/1970720[Crossref] Zbl0169.23302
- [22] Hartshorne R., Ample Subvarieties of Algebraic Varieties, Lecture Notes in Math., 156, Springer, Berlin-New York, 1970 http://dx.doi.org/10.1007/BFb0067839[Crossref] Zbl0208.48901
- [23] Hartshorne R., Algebraic Geometry, Grad. Texts in Math., 52, Springer, New York-Heidelberg, 1977 [Crossref]
- [24] Hironaka H., Matsumura H., Formal functions and formal embeddings, J. Math. Soc. Japan, 1986, 20(1–2), 52–82 [Crossref] Zbl0157.27701
- [25] Kleiman S.L., Ample vector bundles on algebraic surfaces, Proc. Amer. Math. Soc., 1969, 21(3), 673–676 http://dx.doi.org/10.1090/S0002-9939-1969-0251044-7[Crossref] Zbl0176.18502
- [26] Lazarsfeld R., Some applications of the theory of positive vector bundles, In: Complete Intersections, Acireale, 1983, Lecture Notes in Math., 1092, Springer, 1984, 29–61
- [27] Lazarsfeld R., Positivity in Algebraic Geometry, I, Ergeb. Math. Grenzgeb., 48, Springer, Berlin, 2004 http://dx.doi.org/10.1007/978-3-642-18808-4[Crossref]
- [28] Lazarsfeld R., Positivity in Algebraic Geometry, II, Ergeb. Math. Grenzgeb., 49, Springer, Berlin, 2004 http://dx.doi.org/10.1007/978-3-642-18808-4[Crossref]
- [29] Paoletti R., Seshadri constants, gonality of space curves and restriction of stable bundles, J. Differential Geom., 1994, 40(3), 475–504 Zbl0811.14034
- [30] Paoletti R., Seshadri positive curves in a smooth projective 3-fold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1996, 6(4), 259–274 Zbl0874.14018
- [31] Singh A.K., Walther U., On the arithmetic rank of certain Segre products, In: Commutative Algebra and Algebraic Geometry, Contemp. Math., 390, American Mathematical Society, Providence, 2005, 147–155 http://dx.doi.org/10.1090/conm/390/07301[Crossref]
- [32] Sommese A.J., Submanifolds of Abelian varieties, Math. Ann., 1978, 233(3), 229–256 http://dx.doi.org/10.1007/BF01405353[Crossref] Zbl0381.14007
- [33] Speiser R., Cohomological dimension and Abelian varieties, Amer. J. Math., 1973, 95, 1–34 http://dx.doi.org/10.2307/2373641[Crossref]
- [34] Verdi L., Esempi di superficie e curve intersezioni complete insiemistiche, Boll. Un. Mat. Ital. A, 1986, 5(1), 47–53
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.