Seshadri positive submanifolds of polarized manifolds

Lucian Bădescu; Mauro Beltrametti

Open Mathematics (2013)

  • Volume: 11, Issue: 3, page 447-476
  • ISSN: 2391-5455

Abstract

top
Let Y be a submanifold of dimension y of a polarized complex manifold (X, A) of dimension k ≥ 2, with 1 ≤ y ≤ k−1. We define and study two positivity conditions on Y in (X, A), called Seshadri A-bigness and (a stronger one) Seshadri A-ampleness. In this way we get a natural generalization of the theory initiated by Paoletti in [Paoletti R., Seshadri positive curves in a smooth projective 3-fold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1996, 6(4), 259–274] (which corresponds to the case (k, y) = (3, 1)) and subsequently generalized and completed in [Bădescu L., Beltrametti M.C., Francia P., Positive curves in polarized manifolds, Manuscripta Math, 1997, 92(3), 369–388] (regarding curves in a polarized manifold of arbitrary dimension). The theory presented here, which is new even if y = k − 1, is motivated by a reasonably large area of examples.

How to cite

top

Lucian Bădescu, and Mauro Beltrametti. "Seshadri positive submanifolds of polarized manifolds." Open Mathematics 11.3 (2013): 447-476. <http://eudml.org/doc/269775>.

@article{LucianBădescu2013,
abstract = {Let Y be a submanifold of dimension y of a polarized complex manifold (X, A) of dimension k ≥ 2, with 1 ≤ y ≤ k−1. We define and study two positivity conditions on Y in (X, A), called Seshadri A-bigness and (a stronger one) Seshadri A-ampleness. In this way we get a natural generalization of the theory initiated by Paoletti in [Paoletti R., Seshadri positive curves in a smooth projective 3-fold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1996, 6(4), 259–274] (which corresponds to the case (k, y) = (3, 1)) and subsequently generalized and completed in [Bădescu L., Beltrametti M.C., Francia P., Positive curves in polarized manifolds, Manuscripta Math, 1997, 92(3), 369–388] (regarding curves in a polarized manifold of arbitrary dimension). The theory presented here, which is new even if y = k − 1, is motivated by a reasonably large area of examples.},
author = {Lucian Bădescu, Mauro Beltrametti},
journal = {Open Mathematics},
keywords = {Seshadri constant; Seshadri A-big; Seshadri A-ample; Variety defined in a given degree; Formal rational functions; Cohomological dimension; formal rational functions},
language = {eng},
number = {3},
pages = {447-476},
title = {Seshadri positive submanifolds of polarized manifolds},
url = {http://eudml.org/doc/269775},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Lucian Bădescu
AU - Mauro Beltrametti
TI - Seshadri positive submanifolds of polarized manifolds
JO - Open Mathematics
PY - 2013
VL - 11
IS - 3
SP - 447
EP - 476
AB - Let Y be a submanifold of dimension y of a polarized complex manifold (X, A) of dimension k ≥ 2, with 1 ≤ y ≤ k−1. We define and study two positivity conditions on Y in (X, A), called Seshadri A-bigness and (a stronger one) Seshadri A-ampleness. In this way we get a natural generalization of the theory initiated by Paoletti in [Paoletti R., Seshadri positive curves in a smooth projective 3-fold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1996, 6(4), 259–274] (which corresponds to the case (k, y) = (3, 1)) and subsequently generalized and completed in [Bădescu L., Beltrametti M.C., Francia P., Positive curves in polarized manifolds, Manuscripta Math, 1997, 92(3), 369–388] (regarding curves in a polarized manifold of arbitrary dimension). The theory presented here, which is new even if y = k − 1, is motivated by a reasonably large area of examples.
LA - eng
KW - Seshadri constant; Seshadri A-big; Seshadri A-ample; Variety defined in a given degree; Formal rational functions; Cohomological dimension; formal rational functions
UR - http://eudml.org/doc/269775
ER -

References

top
  1. [1] Altman A., Kleiman S., Introduction to Grothendieck Duality Theory, Lecture Notes in Math., 146, Springer, Berlin- New York, 1970 http://dx.doi.org/10.1007/BFb0060933[Crossref] Zbl0215.37201
  2. [2] Bădescu L., Infinitesimal deformations of negative weights and hyperplane sections, In: Algebraic Geometry, L’Aquila, May 30–June 4, 1988, Lecture Notes in Math., 1417, Springer, Berlin, 1990, 1–22 
  3. [3] Bădescu L., Algebraic Surfaces, Universitext, Springer, New York, 2001 
  4. [4] Bădescu L., Projective Geometry and Formal Geometry, IMPAN Monogr. Mat. (N.S.), 65, Birkhäuser, Basel, 2004 
  5. [5] Bădescu L., Beltrametti M.C., Francia P., Positive curves in polarized manifolds, Manuscripta Math, 1997, 92(3), 369–388 http://dx.doi.org/10.1007/BF02678200[Crossref] Zbl0899.14009
  6. [6] Bădescu L., Valla G., Grothendieck-Lefschetz theory, set-theoretic complete intersections and rational normal scrolls, J. Algebra, 2010, 324(7), 1636–1655 http://dx.doi.org/10.1016/j.jalgebra.2010.05.034[WoS][Crossref] Zbl1211.14055
  7. [7] Barth W., Hulek K., Peters C.A.M., Van de Ven A., Compact Complex Surfaces, 2nd ed., Ergeb. Math. Grenzgeb., 4, Springer, Berlin, 2004 Zbl1036.14016
  8. [8] Beltrametti M.C., Sommese A.J., Remarks on numerically positive and big line bundles, In: Projective Geometry with Applications, Lecture Notes in Pure and Appl. Math., 166, Marcel Dekker, New York, 1994, 9–18 Zbl0834.14008
  9. [9] Beltrametti M.C., Sommese A.J., Notes on embeddings of blowups, J. Algebra, 1996, 186(3), 861–871 http://dx.doi.org/10.1006/jabr.1996.0399[Crossref] Zbl0881.14007
  10. [10] Bloch S., Gieseker D., The positivity of the Chern classes of an ample vector bundle, Invent. Math., 1971, 12, 112–117 http://dx.doi.org/10.1007/BF01404655[Crossref] Zbl0212.53502
  11. [11] Fulton W., Intersection Theory, Ergeb. Math. Grenzgeb., 2, Springer, Berlin, 1984 Zbl0541.14005
  12. [12] Fulton W., Hanssen J., A connectedness theorem for proper varieties, with applications to intersections and singularities of mappings, Ann. of Math., 1979, 110(1), 159–166 http://dx.doi.org/10.2307/1971249[Crossref] Zbl0389.14002
  13. [13] Fulton W., Lazarsfeld R., On the connectedness of degeneracy loci and special divisors, Acta Math., 1981, 146(3–4), 271–283 http://dx.doi.org/10.1007/BF02392466[Crossref] Zbl0469.14018
  14. [14] Fulton W., Lazarsfeld R., Positive polynomials for ample vector bundles, Ann. of Math., 1983, 118(1), 35–60 http://dx.doi.org/10.2307/2006953[Crossref] Zbl0537.14009
  15. [15] Griffiths Ph., Harris J., Principles of Algebraic Geometry, Pure and Applied Mathematics, John Wiley & Sons, New York, 1978 Zbl0408.14001
  16. [16] Grothendieck A., Éléments de géométrie algébrique II, Inst. Hautes Études Sci. Publ. Math., 1961, 8, 5–222 http://dx.doi.org/10.1007/BF02699291[Crossref] 
  17. [17] Grothendieck A., Éléments de géométrie algébrique III (première partie), Inst. Hautes Études Sci. Publ. Math., 1961, 11, 5–167 http://dx.doi.org/10.1007/BF02684273[Crossref] 
  18. [18] Grothendieck A., Éléments de géométrie algébrique IV (première partie), Inst. Hautes Études Sci. Publ. Math., 1964, 20, 5–259 http://dx.doi.org/10.1007/BF02684747[Crossref] 
  19. [19] Grothendieck A., Revêtements Étales et Groupe Fondamental, I, Lecture Notes in Math., 224, Springer, New York, 1971 
  20. [20] Hartshorne R., Ample vector bundles, Inst. Hautes Études Sci. Publ. Math., 1966, 29, 63–94 Zbl0173.49003
  21. [21] Hartshorne R., Cohomological dimension of algebraic varieties, Ann. of Math., 1968, 88, 403–450 http://dx.doi.org/10.2307/1970720[Crossref] Zbl0169.23302
  22. [22] Hartshorne R., Ample Subvarieties of Algebraic Varieties, Lecture Notes in Math., 156, Springer, Berlin-New York, 1970 http://dx.doi.org/10.1007/BFb0067839[Crossref] Zbl0208.48901
  23. [23] Hartshorne R., Algebraic Geometry, Grad. Texts in Math., 52, Springer, New York-Heidelberg, 1977 [Crossref] 
  24. [24] Hironaka H., Matsumura H., Formal functions and formal embeddings, J. Math. Soc. Japan, 1986, 20(1–2), 52–82 [Crossref] Zbl0157.27701
  25. [25] Kleiman S.L., Ample vector bundles on algebraic surfaces, Proc. Amer. Math. Soc., 1969, 21(3), 673–676 http://dx.doi.org/10.1090/S0002-9939-1969-0251044-7[Crossref] Zbl0176.18502
  26. [26] Lazarsfeld R., Some applications of the theory of positive vector bundles, In: Complete Intersections, Acireale, 1983, Lecture Notes in Math., 1092, Springer, 1984, 29–61 
  27. [27] Lazarsfeld R., Positivity in Algebraic Geometry, I, Ergeb. Math. Grenzgeb., 48, Springer, Berlin, 2004 http://dx.doi.org/10.1007/978-3-642-18808-4[Crossref] 
  28. [28] Lazarsfeld R., Positivity in Algebraic Geometry, II, Ergeb. Math. Grenzgeb., 49, Springer, Berlin, 2004 http://dx.doi.org/10.1007/978-3-642-18808-4[Crossref] 
  29. [29] Paoletti R., Seshadri constants, gonality of space curves and restriction of stable bundles, J. Differential Geom., 1994, 40(3), 475–504 Zbl0811.14034
  30. [30] Paoletti R., Seshadri positive curves in a smooth projective 3-fold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1996, 6(4), 259–274 Zbl0874.14018
  31. [31] Singh A.K., Walther U., On the arithmetic rank of certain Segre products, In: Commutative Algebra and Algebraic Geometry, Contemp. Math., 390, American Mathematical Society, Providence, 2005, 147–155 http://dx.doi.org/10.1090/conm/390/07301[Crossref] 
  32. [32] Sommese A.J., Submanifolds of Abelian varieties, Math. Ann., 1978, 233(3), 229–256 http://dx.doi.org/10.1007/BF01405353[Crossref] Zbl0381.14007
  33. [33] Speiser R., Cohomological dimension and Abelian varieties, Amer. J. Math., 1973, 95, 1–34 http://dx.doi.org/10.2307/2373641[Crossref] 
  34. [34] Verdi L., Esempi di superficie e curve intersezioni complete insiemistiche, Boll. Un. Mat. Ital. A, 1986, 5(1), 47–53 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.