Seshadri positive curves in a smooth projective -fold
- Volume: 6, Issue: 4, page 259-274
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topPaoletti, Roberto. "Seshadri positive curves in a smooth projective \( 3 \)-fold." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 6.4 (1995): 259-274. <http://eudml.org/doc/244313>.
@article{Paoletti1995,
abstract = {A notion of positivity, called Seshadri ampleness, is introduced for a smooth curve \( C \) in a polarized smooth projective \( 3 \)-fold \( (X,A) \), whose motivation stems from some recent results concerning the gonality of space curves and the behaviour of stable bundles on \( \mathbb\{P\}^\{3\} \) under restriction to \( C \). This condition is stronger than the normality of the normal bundle and more general than \( C \) being defined by a regular section of an ample rank-\( 2 \) vector bundle. We then explore some of the properties of Seshadri-ample curves.},
author = {Paoletti, Roberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Seshadri constant; Ampleness; Bigness; Normal bundle; Cohomogical dimension; curves in a projective threefold; Seshadri-big curve; Seshadri-ample curve},
language = {eng},
month = {12},
number = {4},
pages = {259-274},
publisher = {Accademia Nazionale dei Lincei},
title = {Seshadri positive curves in a smooth projective \( 3 \)-fold},
url = {http://eudml.org/doc/244313},
volume = {6},
year = {1995},
}
TY - JOUR
AU - Paoletti, Roberto
TI - Seshadri positive curves in a smooth projective \( 3 \)-fold
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1995/12//
PB - Accademia Nazionale dei Lincei
VL - 6
IS - 4
SP - 259
EP - 274
AB - A notion of positivity, called Seshadri ampleness, is introduced for a smooth curve \( C \) in a polarized smooth projective \( 3 \)-fold \( (X,A) \), whose motivation stems from some recent results concerning the gonality of space curves and the behaviour of stable bundles on \( \mathbb{P}^{3} \) under restriction to \( C \). This condition is stronger than the normality of the normal bundle and more general than \( C \) being defined by a regular section of an ample rank-\( 2 \) vector bundle. We then explore some of the properties of Seshadri-ample curves.
LA - eng
KW - Seshadri constant; Ampleness; Bigness; Normal bundle; Cohomogical dimension; curves in a projective threefold; Seshadri-big curve; Seshadri-ample curve
UR - http://eudml.org/doc/244313
ER -
References
top- ARBARELLO, E. - CORNALBA, M. - GRIFFITHS, P. - HARRIS, J., The Geometry of Algebraic Curves. Vol. I, Springer-Verlag, 1985. Zbl1235.14002MR770932
- BOGOMOLOV, F., Unstable vector bundles and curves on surfaces. Proc. Int. Congr. Mathem., Helsinki1978, 517-524. Zbl0485.14004MR562649
- EISENBUD, D. - VAN DE VEN, A., On the normal bundle of smooth rational space curves. Math. Ann., 256, 1981, 453-463. Zbl0443.14015MR628227DOI10.1007/BF01450541
- FUJITA, T., On the hyperplane principle of Lefshetz. J. Math. Soc. Japan, 32, 1980, 153-165. Zbl0414.14007MR554521DOI10.2969/jmsj/03210153
- FULTON, W., Intersection Theory. Springer-Verlag, 1984. Zbl0885.14002MR732620
- FULTON, W. - LAZARSFELD, R., Positivity and excess intersection. in : Enumerative and Classical Algebraic Geometry. Prog, in Math., 24, (Nice 1981) Birkhäuser, 1982, 97-105. Zbl0501.14003MR685765
- FULTON, W. - LAZARSFELD, R., On the connectedness of degeneracy loci and special divisors. Acta Math., 146, 1981, 271-283. Zbl0469.14018MR611386DOI10.1007/BF02392466
- FULTON, W. - LAZARSFELD, R., Positive polynomials for ample vector bundles. Ann of Math., 118, 1983, 35-60. Zbl0537.14009MR707160DOI10.2307/2006953
- HARTSHORNE, R., Ample Subvarieties of Algebraic Varieties. LNM, 156, Springer-Verlag, 1970. Zbl0208.48901MR282977
- KAWAMATA, Y. - MATSUDA, K. - MATSUHE, K., Introduction to the minimal model problem. In: T. ODA (ed.), Algebraic Geometry. Sendai 1985, Adv. St. in Pure Math., vol. 10, North-Holland, 1987, 283-360. Zbl0672.14006MR946243
- LAZARSFELD, R., Some applications of the theory of ample vector bundles. In: S. GRECO - R. STRANO (eds.), Complete Intersections. Arcireale 1983, LNM1092, Springer-Verlag, 1984, 29-61. Zbl0547.14009MR775876DOI10.1007/BFb0099356
- LAZARSFELD, R., A sampling of vector bundle techniques in the study of linear series. In: M. CORNALBA et al. (eds.), Proceedings of the Intern. Centre Theor. Phys. College on Riemann Surfaces (Trieste 1987). World Scientific Press, 1989, 500-559. Zbl0800.14003MR1082360
- LOPEZ, A., Noether-Lefshetz theory and the Picard group of projective surface. PhD Thesis, Brown University, 1988. Zbl0736.14012
- PAOLETTI, R., Free pencils on divisors. Mathematische Annalen, to appear. Zbl0835.14005MR1348358DOI10.1007/BF01460982
- PAOLETTI, R., Seshadri constants, gonality of space curves and restriction of stable bundles. J. Diff. Geom., 40, 1972, 475-504. Zbl0811.14034MR1305979
- PARANJAPE, K. - RAMANAN, S., On the canonical ring of a curve. In: Algebraic Geometry and Commutative Algebra, in Honor of Masayoshi Nagata. Kinokuniya, Tokio 1988, vol. II, 503-516. Zbl0699.14041MR977775
- SERRANO, F., Extension of morphisms defined on a divisor. Math. Ann., 277, 1987, 395-413. Zbl0595.14005MR891582DOI10.1007/BF01458322
- SHIFFMAN, B. - SOMMESE, A. J., Vanishing theorems on complex manifolds. Progr. Math., vol. 56, Birkhäuser, Boston1985. Zbl0578.32055MR782484
- SOMMESE, A. J., On manifolds that cannot be ample divisors. Math. Ann., 221, 1987, 55-72. Zbl0306.14006MR404703
- SPEISER, R. D., Cohomological dimension of abelian varieties. Thesis, Cornell University, 1970. Zbl0271.14009MR2619546
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.