On local convexity of nonlinear mappings between Banach spaces
Iryna Banakh; Taras Banakh; Anatolij Plichko; Anatoliy Prykarpatsky
Open Mathematics (2012)
- Volume: 10, Issue: 6, page 2264-2271
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topIryna Banakh, et al. "On local convexity of nonlinear mappings between Banach spaces." Open Mathematics 10.6 (2012): 2264-2271. <http://eudml.org/doc/269784>.
@article{IrynaBanakh2012,
abstract = {We find conditions for a smooth nonlinear map f: U → V between open subsets of Hilbert or Banach spaces to be locally convex in the sense that for some c and each positive ɛ < c the image f(B ɛ(x)) of each ɛ-ball B ɛ(x) ⊂ U is convex. We give a lower bound on c via the second order Lipschitz constant Lip2(f), the Lipschitz-open constant Lipo(f) of f, and the 2-convexity number conv2(X) of the Banach space X.},
author = {Iryna Banakh, Taras Banakh, Anatolij Plichko, Anatoliy Prykarpatsky},
journal = {Open Mathematics},
keywords = {Locally convex mapping; Hilbert and Banach spaces; Modulus of convexity; Modulus of smoothness; Lipschitzopen maps; locally convex mapping; modulus of convexity; modulus of smoothness; Lipschitz-open maps},
language = {eng},
number = {6},
pages = {2264-2271},
title = {On local convexity of nonlinear mappings between Banach spaces},
url = {http://eudml.org/doc/269784},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Iryna Banakh
AU - Taras Banakh
AU - Anatolij Plichko
AU - Anatoliy Prykarpatsky
TI - On local convexity of nonlinear mappings between Banach spaces
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 2264
EP - 2271
AB - We find conditions for a smooth nonlinear map f: U → V between open subsets of Hilbert or Banach spaces to be locally convex in the sense that for some c and each positive ɛ < c the image f(B ɛ(x)) of each ɛ-ball B ɛ(x) ⊂ U is convex. We give a lower bound on c via the second order Lipschitz constant Lip2(f), the Lipschitz-open constant Lipo(f) of f, and the 2-convexity number conv2(X) of the Banach space X.
LA - eng
KW - Locally convex mapping; Hilbert and Banach spaces; Modulus of convexity; Modulus of smoothness; Lipschitzopen maps; locally convex mapping; modulus of convexity; modulus of smoothness; Lipschitz-open maps
UR - http://eudml.org/doc/269784
ER -
References
top- [1] Augustynowicz A., Dzedzej Z., Gelman B.D., The solution set to BVP for some functional-differential inclusions, Set-Valued Anal., 1998, 6(3), 257–263 http://dx.doi.org/10.1023/A:1008618606813[Crossref] Zbl0931.34046
- [2] Borwein J., Guirao A.J., Hájek P., Vanderwerff J., Uniformly convex functions on Banach spaces, Proc. Amer. Math. Soc., 2009, 137(3), 1081–1091 http://dx.doi.org/10.1090/S0002-9939-08-09630-5[Crossref] Zbl1184.52009
- [3] Deimling K., Nonlinear Functional Analysis, Springer, Berlin, 1985 http://dx.doi.org/10.1007/978-3-662-00547-7[Crossref]
- [4] Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math., 64, Longman Scientific & Technical, Harlow, 1993 Zbl0782.46019
- [5] DeVore R.A., Lorentz G.G., Constructive Approximation, Grundlehren Math. Wiss., 303, Springer, Berlin, 1993 Zbl0797.41016
- [6] Goebel K., Concise Course on Fixed Point Theorems, Yokohama Publishers, Yokohama, 2002 Zbl1066.47055
- [7] Goebel K., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., 28, Cambridge University Press, Cambridge, 1990 Zbl0708.47031
- [8] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Math. Appl., 495, Kluwer, Dordrecht, 1999 Zbl0937.55001
- [9] Guirao A.J., Hájek P., On the moduli of convexity, Proc. Amer. Math. Soc., 2007, 135(10), 3233–3240 http://dx.doi.org/10.1090/S0002-9939-07-09030-2[Crossref][WoS] Zbl1129.46004
- [10] Hájek P., Montesinos V., Zizler V., Geometry and Gâteaux smoothness in separable Banach spaces, Oper. Matrices, 2012, 6(2), 201–232 [Crossref][WoS] Zbl1277.46006
- [11] Hörmander L., Sur la fonction dáppui des ensembles convexes dans un espace localement convexe, Ark. Math., 1955, 3(2), 181–186 http://dx.doi.org/10.1007/BF02589354[Crossref] Zbl0064.10504
- [12] Krasnoselsky M.A., Zabreyko P.P., Geometric Methods of Nonlinear Analysis, Nauka, Moscow, 1975 (in Russian)
- [13] Lajara S., Pallarés A.J., Troyanski S., Moduli of convexity and smoothness of reflexive subspaces of L 1, J. Funct. Anal., 2011, 261(11), 3211–3225 http://dx.doi.org/10.1016/j.jfa.2011.07.024[Crossref] Zbl1239.46007
- [14] Lindenstrauss J., Tzafriri L., Classical Banach Spaces II. Function Spaces, Ergeb. Math. Grenzgeb., 97, Springer, Berlin-New York, 1979 Zbl0403.46022
- [15] Linke Yu.É., Application of Michaelś theorem and its converse to sublinear operators, Math. Notes, 1992, 52(1), 680–686 http://dx.doi.org/10.1007/BF01247650[Crossref] Zbl0787.47037
- [16] Nirenberg L., Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Sciences, New York, 1974
- [17] Prykarpatska N.K., Blackmore D.L., Prykarpatsky A.K., Pytel-Kudela M., On the inf-type extremality solutions to Hamilton-Jacobi equations, their regularity properties, and some generalizations, Miskolc Math. Notes, 2003, 4(2), 153–180 Zbl1053.35043
- [18] Prykarpatsky A.K., A Borsuk-Ulam type generalization of the Leray-Schauder fixed point theorem, preprint available at http://arxiv.org/abs/0902.4416 Zbl1199.47222
- [19] Prykarpatsky A.K., Blackmore D., A solution set analysis of a nonlinear operator equation using a Leray-Schauder type fixed point approach, Topology, 2009, 48(2–4) 182–185 http://dx.doi.org/10.1016/j.top.2009.11.017[WoS][Crossref] Zbl1192.65069
- [20] Prykarpats’kyi A.K., An infinite-dimensional Borsuk-Ulam-type generalization of the Leray-Schauder fixed-point theorem and some applications, Ukrainian Math. J., 2008, 60(1), 114–120 http://dx.doi.org/10.1007/s11253-008-0046-3[Crossref]
- [21] Samoilenko A.M., Prykarpats’kyi A.K., Samoilenko V.H., Lyapunov-Schmidt approach to studying homoclinics splitting in weakly perturbed Lagrangian and Hamiltonian systems, Ukrainian Math. J., 2003, 55(1), 82–92 http://dx.doi.org/10.1023/A:1025072619144[Crossref]
- [22] Schwartz J.T., Nonlinear Functional Analysis, Gordon and Breach, New York-London-Paris, 1969
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.