On local convexity of nonlinear mappings between Banach spaces

Iryna Banakh; Taras Banakh; Anatolij Plichko; Anatoliy Prykarpatsky

Open Mathematics (2012)

  • Volume: 10, Issue: 6, page 2264-2271
  • ISSN: 2391-5455

Abstract

top
We find conditions for a smooth nonlinear map f: U → V between open subsets of Hilbert or Banach spaces to be locally convex in the sense that for some c and each positive ɛ < c the image f(B ɛ(x)) of each ɛ-ball B ɛ(x) ⊂ U is convex. We give a lower bound on c via the second order Lipschitz constant Lip2(f), the Lipschitz-open constant Lipo(f) of f, and the 2-convexity number conv2(X) of the Banach space X.

How to cite

top

Iryna Banakh, et al. "On local convexity of nonlinear mappings between Banach spaces." Open Mathematics 10.6 (2012): 2264-2271. <http://eudml.org/doc/269784>.

@article{IrynaBanakh2012,
abstract = {We find conditions for a smooth nonlinear map f: U → V between open subsets of Hilbert or Banach spaces to be locally convex in the sense that for some c and each positive ɛ < c the image f(B ɛ(x)) of each ɛ-ball B ɛ(x) ⊂ U is convex. We give a lower bound on c via the second order Lipschitz constant Lip2(f), the Lipschitz-open constant Lipo(f) of f, and the 2-convexity number conv2(X) of the Banach space X.},
author = {Iryna Banakh, Taras Banakh, Anatolij Plichko, Anatoliy Prykarpatsky},
journal = {Open Mathematics},
keywords = {Locally convex mapping; Hilbert and Banach spaces; Modulus of convexity; Modulus of smoothness; Lipschitzopen maps; locally convex mapping; modulus of convexity; modulus of smoothness; Lipschitz-open maps},
language = {eng},
number = {6},
pages = {2264-2271},
title = {On local convexity of nonlinear mappings between Banach spaces},
url = {http://eudml.org/doc/269784},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Iryna Banakh
AU - Taras Banakh
AU - Anatolij Plichko
AU - Anatoliy Prykarpatsky
TI - On local convexity of nonlinear mappings between Banach spaces
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 2264
EP - 2271
AB - We find conditions for a smooth nonlinear map f: U → V between open subsets of Hilbert or Banach spaces to be locally convex in the sense that for some c and each positive ɛ < c the image f(B ɛ(x)) of each ɛ-ball B ɛ(x) ⊂ U is convex. We give a lower bound on c via the second order Lipschitz constant Lip2(f), the Lipschitz-open constant Lipo(f) of f, and the 2-convexity number conv2(X) of the Banach space X.
LA - eng
KW - Locally convex mapping; Hilbert and Banach spaces; Modulus of convexity; Modulus of smoothness; Lipschitzopen maps; locally convex mapping; modulus of convexity; modulus of smoothness; Lipschitz-open maps
UR - http://eudml.org/doc/269784
ER -

References

top
  1. [1] Augustynowicz A., Dzedzej Z., Gelman B.D., The solution set to BVP for some functional-differential inclusions, Set-Valued Anal., 1998, 6(3), 257–263 http://dx.doi.org/10.1023/A:1008618606813[Crossref] Zbl0931.34046
  2. [2] Borwein J., Guirao A.J., Hájek P., Vanderwerff J., Uniformly convex functions on Banach spaces, Proc. Amer. Math. Soc., 2009, 137(3), 1081–1091 http://dx.doi.org/10.1090/S0002-9939-08-09630-5[Crossref] Zbl1184.52009
  3. [3] Deimling K., Nonlinear Functional Analysis, Springer, Berlin, 1985 http://dx.doi.org/10.1007/978-3-662-00547-7[Crossref] 
  4. [4] Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math., 64, Longman Scientific & Technical, Harlow, 1993 Zbl0782.46019
  5. [5] DeVore R.A., Lorentz G.G., Constructive Approximation, Grundlehren Math. Wiss., 303, Springer, Berlin, 1993 Zbl0797.41016
  6. [6] Goebel K., Concise Course on Fixed Point Theorems, Yokohama Publishers, Yokohama, 2002 Zbl1066.47055
  7. [7] Goebel K., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., 28, Cambridge University Press, Cambridge, 1990 Zbl0708.47031
  8. [8] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Math. Appl., 495, Kluwer, Dordrecht, 1999 Zbl0937.55001
  9. [9] Guirao A.J., Hájek P., On the moduli of convexity, Proc. Amer. Math. Soc., 2007, 135(10), 3233–3240 http://dx.doi.org/10.1090/S0002-9939-07-09030-2[Crossref][WoS] Zbl1129.46004
  10. [10] Hájek P., Montesinos V., Zizler V., Geometry and Gâteaux smoothness in separable Banach spaces, Oper. Matrices, 2012, 6(2), 201–232 [Crossref][WoS] Zbl1277.46006
  11. [11] Hörmander L., Sur la fonction dáppui des ensembles convexes dans un espace localement convexe, Ark. Math., 1955, 3(2), 181–186 http://dx.doi.org/10.1007/BF02589354[Crossref] Zbl0064.10504
  12. [12] Krasnoselsky M.A., Zabreyko P.P., Geometric Methods of Nonlinear Analysis, Nauka, Moscow, 1975 (in Russian) 
  13. [13] Lajara S., Pallarés A.J., Troyanski S., Moduli of convexity and smoothness of reflexive subspaces of L 1, J. Funct. Anal., 2011, 261(11), 3211–3225 http://dx.doi.org/10.1016/j.jfa.2011.07.024[Crossref] Zbl1239.46007
  14. [14] Lindenstrauss J., Tzafriri L., Classical Banach Spaces II. Function Spaces, Ergeb. Math. Grenzgeb., 97, Springer, Berlin-New York, 1979 Zbl0403.46022
  15. [15] Linke Yu.É., Application of Michaelś theorem and its converse to sublinear operators, Math. Notes, 1992, 52(1), 680–686 http://dx.doi.org/10.1007/BF01247650[Crossref] Zbl0787.47037
  16. [16] Nirenberg L., Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Sciences, New York, 1974 
  17. [17] Prykarpatska N.K., Blackmore D.L., Prykarpatsky A.K., Pytel-Kudela M., On the inf-type extremality solutions to Hamilton-Jacobi equations, their regularity properties, and some generalizations, Miskolc Math. Notes, 2003, 4(2), 153–180 Zbl1053.35043
  18. [18] Prykarpatsky A.K., A Borsuk-Ulam type generalization of the Leray-Schauder fixed point theorem, preprint available at http://arxiv.org/abs/0902.4416 Zbl1199.47222
  19. [19] Prykarpatsky A.K., Blackmore D., A solution set analysis of a nonlinear operator equation using a Leray-Schauder type fixed point approach, Topology, 2009, 48(2–4) 182–185 http://dx.doi.org/10.1016/j.top.2009.11.017[WoS][Crossref] Zbl1192.65069
  20. [20] Prykarpats’kyi A.K., An infinite-dimensional Borsuk-Ulam-type generalization of the Leray-Schauder fixed-point theorem and some applications, Ukrainian Math. J., 2008, 60(1), 114–120 http://dx.doi.org/10.1007/s11253-008-0046-3[Crossref] 
  21. [21] Samoilenko A.M., Prykarpats’kyi A.K., Samoilenko V.H., Lyapunov-Schmidt approach to studying homoclinics splitting in weakly perturbed Lagrangian and Hamiltonian systems, Ukrainian Math. J., 2003, 55(1), 82–92 http://dx.doi.org/10.1023/A:1025072619144[Crossref] 
  22. [22] Schwartz J.T., Nonlinear Functional Analysis, Gordon and Breach, New York-London-Paris, 1969 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.