Generalized directional derivatives for locally Lipschitz functions which satisfy Leibniz rule
J. Grzybowski, D. Pallaschke, R. Urbański (2007)
Control and Cybernetics
Similarity:
J. Grzybowski, D. Pallaschke, R. Urbański (2007)
Control and Cybernetics
Similarity:
Sven Heinrich (1986)
Czechoslovak Mathematical Journal
Similarity:
G. Godefroy, N. J. Kalton (2003)
Studia Mathematica
Similarity:
We show that when a linear quotient map to a separable Banach space X has a Lipschitz right inverse, then it has a linear right inverse. If a separable space X embeds isometrically into a Banach space Y, then Y contains an isometric linear copy of X. This is false for every nonseparable weakly compactly generated Banach space X. Canonical examples of nonseparable Banach spaces which are Lipschitz isomorphic but not linearly isomorphic are constructed. If a Banach space X has the bounded...
Luděk Zajíček (1997)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Luděk Zajíček (1983)
Czechoslovak Mathematical Journal
Similarity:
Tomás Domínguez Benavides (1980)
Collectanea Mathematica
Similarity: