A Numerical Approach of the sentinel method for distributed parameter systems
Aboubakari Traore; Benjamin Mampassi; Bisso Saley
Open Mathematics (2007)
- Volume: 5, Issue: 4, page 751-763
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAboubakari Traore, Benjamin Mampassi, and Bisso Saley. "A Numerical Approach of the sentinel method for distributed parameter systems." Open Mathematics 5.4 (2007): 751-763. <http://eudml.org/doc/269785>.
@article{AboubakariTraore2007,
abstract = {In this paper we consider the problem of detecting pollution in some non linear parabolic systems using the sentinel method. For this purpose we develop and analyze a new approach to the discretization which pays careful attention to the stability of the solution. To illustrate convergence properties we give some numerical results that present good properties and show new ways for building discrete sentinels.},
author = {Aboubakari Traore, Benjamin Mampassi, Bisso Saley},
journal = {Open Mathematics},
keywords = {Sentinel method; collocation method; Chebyshev differentiation matrix; Gauss-Legendre points and weight matrix; sentinel method; Gauss-Legendre points; nonlinear parabolic boundary value problems; unknown source term; pseudo-spectral method; convergence; numerical experiments},
language = {eng},
number = {4},
pages = {751-763},
title = {A Numerical Approach of the sentinel method for distributed parameter systems},
url = {http://eudml.org/doc/269785},
volume = {5},
year = {2007},
}
TY - JOUR
AU - Aboubakari Traore
AU - Benjamin Mampassi
AU - Bisso Saley
TI - A Numerical Approach of the sentinel method for distributed parameter systems
JO - Open Mathematics
PY - 2007
VL - 5
IS - 4
SP - 751
EP - 763
AB - In this paper we consider the problem of detecting pollution in some non linear parabolic systems using the sentinel method. For this purpose we develop and analyze a new approach to the discretization which pays careful attention to the stability of the solution. To illustrate convergence properties we give some numerical results that present good properties and show new ways for building discrete sentinels.
LA - eng
KW - Sentinel method; collocation method; Chebyshev differentiation matrix; Gauss-Legendre points and weight matrix; sentinel method; Gauss-Legendre points; nonlinear parabolic boundary value problems; unknown source term; pseudo-spectral method; convergence; numerical experiments
UR - http://eudml.org/doc/269785
ER -
References
top- [1] A.S. Ackleh, B.G. Fitzpatrick and T.G. Hallam: “Approximation and parameter estimation problems for algal aggregation models”, Math. Models Methods Appl. Sci., Vol. 4, (1994), no. 3, pp. 291–311. http://dx.doi.org/10.1142/S0218202594000182 Zbl0823.92029
- [2] P. Bochev and M.D. Gunzburger: “Least-squares finite-element methods for optimization and control problems for the Stokes equations”, Comput. Math. Appl., Vol. 48, (2004), no. 7–8, pp. 1035–1057. http://dx.doi.org/10.1016/j.camwa.2004.10.004 Zbl1142.76409
- [3] O. Bodart, J.P. Kernévez and T. Männikkö: “Sentinels for distributed environmental systems”, In Eleventh IASTED International Conference on Modelling, Identification and Control, Innsbruck (Austria), (1992), pp. 219–222.
- [4] O. Bodart, J.P. Kernévez and T. Männikkö: “Numerical methods to compute sentinels for distributed systems”, In: J. Yvon, J. Henry (Eds.), Proceedings of the 16th IFIP TC7 conference on System modelling and Optimization, Springer Verlag, Paris, 1994. Zbl0815.93042
- [5] J.H. Bramble, A.H. Schatz, V. Thomée and L.B. Wahlbin: “Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations”, SIAM J. Numer. Anal., Vol. 14, (1977), no. 2, pp. 218–241. http://dx.doi.org/10.1137/0714015 Zbl0364.65084
- [6] H. Brezis: Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.
- [7] A. E. Hamidi: Remarques sur les sentinelles pour les systèmes distribués, Prépublication du département de Mathématique, Université La Rochelle, 2001.
- [8] J.P. Kernévez: Sentinelle pour veiller sur l’environnement, Collection RMA, Masson, Paris, 1997.
- [9] J.P. Kernévez: The sentinel method and its application to environmental pollution problems, CRC Mathematical Modelling Series, CRC Press, Boca Raton, FL, 1997.
- [10] S. Labbé and E. Trélat: “Uniform controllability of semidiscrete approximations of parabolic control systems”, Systems Control Lett., Vol. 55, (2006), no. 7, pp. 597–609. http://dx.doi.org/10.1016/j.sysconle.2006.01.004 Zbl1129.93324
- [11] I. Lasiecka and R. Triggiani: Control theory for partial differential equations: continuous and approximation theories, I, Abstract parabolic systems, Encyclopedia of Mathematics and its Applications, Vol. 74, Cambridge University Press, Cambridge, 2000. Zbl0942.93001
- [12] J.L. Lions: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1, Contrôlabilité exacte, Recherches en Mathématiques Appliquées 8, Masson, Paris, 1988.
- [13] J.L. Lions: Sentinelles pour les systèmes distribués á données incomplètes, Recherches en Mathématiques Appliquées 21, Masson, Paris, 1992.
- [14] T. Mannikkö and O. Bodart: “Parameter identification with the method of sentinels”, Proceedings of the Workshop on Optimization and Optimal Control (Jyväskylä, 1992), Report 58, Univ. Jyväskylä, Jyväskylä, (1993), pp. 97–107. Zbl0796.93012
- [15] V. Mikhaĭlov: Équations aux dérivées partielles, Translated from the Russian by Irina Petrova, Mir, Moscow, distributed by Imported Publications, Inc., Chicago, Ill., 1980.
- [16] F. Molinet: Simulation numerique de problème d’écosystèmes. Sentimelle pour la detection de l’origine d’une pollution, Ph.D. dissertation, Université Louise Pasteur, Strasbourg, France, 1997.
- [17] R. Mosé, M.E. Stoeckel, C. Poulard, P. Ackerer and F. Lehmann: “Transport parameters identification: application of the sentinel method”, Computational Geosciences, Vol. 4, (2000), pp. 251–273. http://dx.doi.org/10.1023/A:1011516101288 Zbl0993.92035
- [18] O. Nakoulima: “A revision of Lions’s notion of sentinels”, preprint.
- [19] L.N. Trefethen: Spectral methods in MATLAB, Software, Environments, and Tools, 10, SIAM, Philadelphia, PA, 2000.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.