Best constants for metric space inversion inequalities

Stephen Buckley; Safia Hamza

Open Mathematics (2013)

  • Volume: 11, Issue: 5, page 865-875
  • ISSN: 2391-5455

Abstract

top
For every metric space (X, d) and origin o ∈ X, we show the inequality I o(x, y) ≤ 2d o(x, y), where I o(x, y) = d(x, y)/d(x, o)d(y, o) is the metric space inversion semimetric, d o is a metric subordinate to I o, and x, y ∈ X o The constant 2 is best possible.

How to cite

top

Stephen Buckley, and Safia Hamza. "Best constants for metric space inversion inequalities." Open Mathematics 11.5 (2013): 865-875. <http://eudml.org/doc/269794>.

@article{StephenBuckley2013,
abstract = {For every metric space (X, d) and origin o ∈ X, we show the inequality I o(x, y) ≤ 2d o(x, y), where I o(x, y) = d(x, y)/d(x, o)d(y, o) is the metric space inversion semimetric, d o is a metric subordinate to I o, and x, y ∈ X o The constant 2 is best possible.},
author = {Stephen Buckley, Safia Hamza},
journal = {Open Mathematics},
keywords = {Metric space inversion; Best constant; metric space; inversion; isometry},
language = {eng},
number = {5},
pages = {865-875},
title = {Best constants for metric space inversion inequalities},
url = {http://eudml.org/doc/269794},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Stephen Buckley
AU - Safia Hamza
TI - Best constants for metric space inversion inequalities
JO - Open Mathematics
PY - 2013
VL - 11
IS - 5
SP - 865
EP - 875
AB - For every metric space (X, d) and origin o ∈ X, we show the inequality I o(x, y) ≤ 2d o(x, y), where I o(x, y) = d(x, y)/d(x, o)d(y, o) is the metric space inversion semimetric, d o is a metric subordinate to I o, and x, y ∈ X o The constant 2 is best possible.
LA - eng
KW - Metric space inversion; Best constant; metric space; inversion; isometry
UR - http://eudml.org/doc/269794
ER -

References

top
  1. [1] Bonk M., Heinonen J., Koskela P., Uniformizing Gromov Hyperbolic Spaces, Astérisque, 207, Société Mathématique de France, Paris, 2001 
  2. [2] Buckley S.M., Falk K., Wraith D.J., Ptolemaic spaces and CAT(0), Glasg. Math. J., 2009, 51(2), 301–314 http://dx.doi.org/10.1017/S0017089509004984 Zbl1171.53024
  3. [3] Buckley S.M., Herron D.A., Xie X., Metric space inversions, quasihyperbolic distance, and uniform spaces, Indiana Univ. Math. J., 2008, 57(2), 837–890 Zbl1160.30006
  4. [4] Buckley S.M., Wraith D.J., McDougall J., On Ptolemaic metric simplicial complexes, Math. Proc. Cambridge Philos. Soc., 2010, 149(1), 93–104 http://dx.doi.org/10.1017/S0305004110000125 Zbl1203.53030
  5. [5] Foertsch T., Lytchak A., Schroeder V., Nonpositive curvature and the Ptolemy inequality, Int. Math. Res. Not. IMRN, 2007, 22, #rnm100 Zbl1135.53055
  6. [6] Foertsch T., Schroeder V., Hyperbolicity, CAT(−1)-spaces and the Ptolemy inequality, Math. Ann., 2011, 350(2), 339–356 http://dx.doi.org/10.1007/s00208-010-0560-0 Zbl1219.53042
  7. [7] Herron D., Shanmugalingam N., Xie X., Uniformity from Gromov hyperbolicity, Illinois J. Math., 2008, 52(4), 1065–1109 Zbl1189.30055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.