Best constants for metric space inversion inequalities
Open Mathematics (2013)
- Volume: 11, Issue: 5, page 865-875
 - ISSN: 2391-5455
 
Access Full Article
topAbstract
topHow to cite
topStephen Buckley, and Safia Hamza. "Best constants for metric space inversion inequalities." Open Mathematics 11.5 (2013): 865-875. <http://eudml.org/doc/269794>.
@article{StephenBuckley2013,
	abstract = {For every metric space (X, d) and origin o ∈ X, we show the inequality I o(x, y) ≤ 2d o(x, y), where I o(x, y) = d(x, y)/d(x, o)d(y, o) is the metric space inversion semimetric, d o is a metric subordinate to I o, and x, y ∈ X  o The constant 2 is best possible.},
	author = {Stephen Buckley, Safia Hamza},
	journal = {Open Mathematics},
	keywords = {Metric space inversion; Best constant; metric space; inversion; isometry},
	language = {eng},
	number = {5},
	pages = {865-875},
	title = {Best constants for metric space inversion inequalities},
	url = {http://eudml.org/doc/269794},
	volume = {11},
	year = {2013},
}
TY  - JOUR
AU  - Stephen Buckley
AU  - Safia Hamza
TI  - Best constants for metric space inversion inequalities
JO  - Open Mathematics
PY  - 2013
VL  - 11
IS  - 5
SP  - 865
EP  - 875
AB  - For every metric space (X, d) and origin o ∈ X, we show the inequality I o(x, y) ≤ 2d o(x, y), where I o(x, y) = d(x, y)/d(x, o)d(y, o) is the metric space inversion semimetric, d o is a metric subordinate to I o, and x, y ∈ X  o The constant 2 is best possible.
LA  - eng
KW  - Metric space inversion; Best constant; metric space; inversion; isometry
UR  - http://eudml.org/doc/269794
ER  - 
References
top- [1] Bonk M., Heinonen J., Koskela P., Uniformizing Gromov Hyperbolic Spaces, Astérisque, 207, Société Mathématique de France, Paris, 2001
 - [2] Buckley S.M., Falk K., Wraith D.J., Ptolemaic spaces and CAT(0), Glasg. Math. J., 2009, 51(2), 301–314 http://dx.doi.org/10.1017/S0017089509004984 Zbl1171.53024
 - [3] Buckley S.M., Herron D.A., Xie X., Metric space inversions, quasihyperbolic distance, and uniform spaces, Indiana Univ. Math. J., 2008, 57(2), 837–890 Zbl1160.30006
 - [4] Buckley S.M., Wraith D.J., McDougall J., On Ptolemaic metric simplicial complexes, Math. Proc. Cambridge Philos. Soc., 2010, 149(1), 93–104 http://dx.doi.org/10.1017/S0305004110000125 Zbl1203.53030
 - [5] Foertsch T., Lytchak A., Schroeder V., Nonpositive curvature and the Ptolemy inequality, Int. Math. Res. Not. IMRN, 2007, 22, #rnm100 Zbl1135.53055
 - [6] Foertsch T., Schroeder V., Hyperbolicity, CAT(−1)-spaces and the Ptolemy inequality, Math. Ann., 2011, 350(2), 339–356 http://dx.doi.org/10.1007/s00208-010-0560-0 Zbl1219.53042
 - [7] Herron D., Shanmugalingam N., Xie X., Uniformity from Gromov hyperbolicity, Illinois J. Math., 2008, 52(4), 1065–1109 Zbl1189.30055
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.