Asymptotic analysis of the Askey-scheme I: from Krawtchouk to Charlier

Diego Dominici

Open Mathematics (2007)

  • Volume: 5, Issue: 2, page 280-304
  • ISSN: 2391-5455

Abstract

top
We analyze the Charlier polynomials C n(χ) and their zeros asymptotically as n → ∞. We obtain asymptotic approximations, using the limit relation between the Krawtchouk and Charlier polynomials, involving some special functions. We give numerical examples showing the accuracy of our formulas.

How to cite

top

Diego Dominici. "Asymptotic analysis of the Askey-scheme I: from Krawtchouk to Charlier." Open Mathematics 5.2 (2007): 280-304. <http://eudml.org/doc/269797>.

@article{DiegoDominici2007,
abstract = {We analyze the Charlier polynomials C n(χ) and their zeros asymptotically as n → ∞. We obtain asymptotic approximations, using the limit relation between the Krawtchouk and Charlier polynomials, involving some special functions. We give numerical examples showing the accuracy of our formulas.},
author = {Diego Dominici},
journal = {Open Mathematics},
keywords = {Charlier polynomials; Askey-scheme; asymptotic analysis; orthogonal polynomials; hypergeometric polynomials; special functions},
language = {eng},
number = {2},
pages = {280-304},
title = {Asymptotic analysis of the Askey-scheme I: from Krawtchouk to Charlier},
url = {http://eudml.org/doc/269797},
volume = {5},
year = {2007},
}

TY - JOUR
AU - Diego Dominici
TI - Asymptotic analysis of the Askey-scheme I: from Krawtchouk to Charlier
JO - Open Mathematics
PY - 2007
VL - 5
IS - 2
SP - 280
EP - 304
AB - We analyze the Charlier polynomials C n(χ) and their zeros asymptotically as n → ∞. We obtain asymptotic approximations, using the limit relation between the Krawtchouk and Charlier polynomials, involving some special functions. We give numerical examples showing the accuracy of our formulas.
LA - eng
KW - Charlier polynomials; Askey-scheme; asymptotic analysis; orthogonal polynomials; hypergeometric polynomials; special functions
UR - http://eudml.org/doc/269797
ER -

References

top
  1. [1] M. Abramowitz and I.A. Stegun (Eds.): Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications Inc., New York, 1992. Reprint of the 1972 edition. 
  2. [2] N. Asai: “Integral transform and Segal-Bargmann representation associated to q-Charlier polynomials”, In: Quantum information, IV (Nagoya, 2001), World Sci. Publishing, River Edge, NJ, 2002. 
  3. [3] A.D. Barbour: “Asymptotic expansions in the Poisson limit theorem”, Ann. Probab., Vol. 15(2), (1987), pp. 748–766. Zbl0622.60049
  4. [4] N. Barik: “Some theorems on generating functions for Charlier polynomials”, J. Pure Math., Vol. 3, (1983), pp. 111–114. Zbl0611.33017
  5. [5] H. Bavinck and R. Koekoek: “On a difference equation for generalizations of Charlier polynomials”, J. Approx. Theory, Vol. 81(2), 1(995), pp. 195-206. Zbl0865.33006
  6. [6] R. Bo and R. Wong: “Uniform asymptotic expansion of Charlier polynomials”, Methods Appl. Anal., Vol. 1(3), 1994, pp. 294–313. Zbl0846.41025
  7. [7] V.V. Borzov and E.V. Damaskinskii: “Charlier polynomials and Charlier oscillator as discrete realization of the harmonic oscillator”, J. Math. Sci. (N. Y.), Vol. 128(5), (2005), 3161–3176. http://dx.doi.org/10.1007/s10958-005-0262-4 Zbl1099.33005
  8. [8] C. Charlier: “ Über die Darstellung willkürlicher Funktionen”, Ark. Mat. Astron. Fys., Vol. 2(20), (1906), pp. 1–35. Zbl36.0460.01
  9. [9] A. de Médicis, D. Stanton and D. White: “The combinatorics of q-Charlier polynomials”, J. Combin. Theory Ser. A, Vol. 69(1), (1995), pp. 87–114. http://dx.doi.org/10.1016/0097-3165(95)90108-6 Zbl0819.05061
  10. [10] D. E. Dominici: “Asymptotic analysis of the Krawtchouk polynomials by the WKB method”, To appear in The Ramanujan Journal. Zbl1148.33006
  11. [11] D. Dominici: “Asymptotic analysis of the Askey-scheme II: from Charlier to Hermite”, Submitted, 2005, arXiv: math.CA/0508264. 
  12. [12] T.M. Dunster: “Uniform asymptotic expansions for Charlier polynomials”, J. Approx. Theory, Vol. 112(1), (2001), pp. 93–133. http://dx.doi.org/10.1006/jath.2001.3595 
  13. [13] C. Ferreira, J.L. López and E. Mainar: “Asymptotic approximations of orthogonal polynomials”, In: Seventh Zaragoza-Pau Conference on Applied Mathematics and Statistics (Spanish) (Jaca, 2001), Vol. 27 of Monogr. Semin. Mat. García Galdeano, Univ. Zaragoza, Zaragoza, 2003. Zbl1046.33007
  14. [14] C. Ferreira, J.L. Lopez and E. Mainar: “Asymptotic relations in the Askey scheme for hypergeometric orthogonal polynomials” Adv. in Appl. Math., Vol. 31(1), (2003), pp. 61–85. http://dx.doi.org/10.1016/S0196-8858(02)00552-3 Zbl1029.33004
  15. [15] W.M.Y. Goh: “Plancherel-Rotach asymptotics for the Charlier polynomials”, Constr. Approx., Vol. 14(2), (1998), pp. 151–168. http://dx.doi.org/10.1007/s003659900067 Zbl0894.33004
  16. [16] M.N. Hounkonnou, C. Hounga and A. Ronveaux: “Discrete semi-classical orthogonal polynomials: generalized Charlier”, J. Comput. Appl. Math., Vol. 114(2), (2000), pp. 361–366. http://dx.doi.org/10.1016/S0377-0427(99)00275-7 Zbl0971.42015
  17. [17] L.C. Hsu: “Certain asymptotic expansions for Laguerre polynomials and Charlier polynomials”, Approx. Theory Appl. (N.S.), Vol. 11(1), (1995), pp. 94–104. Zbl0827.41024
  18. [18] D.L. Jagerman: “Nonstationary blocking in telephone traffic”, Bell System Tech. J., Vol. 54, (1975), pp. 625–661. 
  19. [19] G.C. Jain and R.P. Gupta: “On a class of polynomials and associated probabilities”, Utilitas Math., Vol. 7, (1975), pp. 363–381. Zbl0311.60010
  20. [20] R. Koekoek and R.F. Swarttouw: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Technical Report 98-17, Delft University of Technology, 1998, http://aw.twi.tudelft.nl/ koekoek/askey/. 
  21. [21] H.T. Koelink: “Yet another basic analogue of Graf’s addition formula” J. Comput. Appl. Math., Vol. 68(1-2), (1996), pp. 209–220. http://dx.doi.org/10.1016/0377-0427(95)00257-X 
  22. [22] I. Krasikov: “Bounds for zeros of the Charlier polynomials”, Methods Appl. Anal., Vol. 9(4), (2002), pp. 599–610. Zbl1166.33301
  23. [23] L. Larsson-Cohn: “L p -norms and information entropies of Charlier polynomials”, J. Approx. Theory, Vol. 117(1), (2002), pp. 152–178. http://dx.doi.org/10.1006/jath.2002.3691 
  24. [24] P.A. Lee: “Some generating functions involving the Charlier polynomials”, Nanta Math., Vol. 8(1), (1975), pp. 83–87. Zbl0327.33003
  25. [25] J. Letessier: “Some results on co-recursive associated Meixner and Charlier polynomials”, J. Comput. Appl. Math., Vol. 103(2), (1999), pp. 323–335. http://dx.doi.org/10.1016/S0377-0427(98)00269-6 Zbl0941.33004
  26. [26] J.L. López and N.M. Temme: “Convergent asymptotic expansions of Charlier, Laguerre and Jacobi polynomials”, Proc. Roy. Soc. Edinburgh Sect. A, Vol. 134(3), (2004), pp. 537–555. Zbl1059.33010
  27. [27] M. Maejima and W. Van Assche: “Probabilistic proofs of asymptotic formulas for some classical polynomials”, Math. Proc. Cambridge Philos. Soc., Vol. 97(3), (1985), pp. 499–510. http://dx.doi.org/10.1017/S0305004100063088 Zbl0557.33006
  28. [28] E.B. McBride: Obtaining generating functions, Springer Tracts in Natural Philosophy, Vol. 21, Springer-Verlag, New York, 1971. 
  29. [29] M.L. Mehta and E.A. van Doorn: “Inequalities for Charlier polynomials with application to teletraffic theory”, J. Math. Anal. Appl., Vol. 133(2), (1988), pp. 449–460. http://dx.doi.org/10.1016/0022-247X(88)90414-3 Zbl0648.60094
  30. [30] C. Micu and E. Papp: “Discrete analogs of quantum mechanical systems. Kravchuk and Charlier polynomials”, In: Proceedings of the Tenth Symposium of Mathematics and its Applications (Timişoara, Nov.6–9, 2003), 2003, pp. 458-464. 
  31. [31] J. Negro and L.M. Nieto: “Symmetries of the wave equation in a uniform lattice” J. Phys. A, Vol. 29(5), (1996), pp. 1107–1114. http://dx.doi.org/10.1088/0305-4470/29/5/023 
  32. [32] N. Privault: “Multiple stochastic integral expansions of arbitrary Poisson jump times functionals”, Statist. Probab. Lett., Vol. 43(2), (1999), pp. 179–188. http://dx.doi.org/10.1016/S0167-7152(98)00257-0 Zbl0938.60077
  33. [33] B. Roos: “Poisson approximation of multivariate Poisson mixtures”, J. Appl. Probab., Vol. 40(2), (2003), pp. 376–390. http://dx.doi.org/10.1239/jap/1053003550 Zbl1028.60011
  34. [34] A. Ruffing, J. Lorenz and K. Ziegler: „Difference ladder operators for a harmonic Schrödinger oscillator using unitary linear lattices”, In: Proceedings of the Sixth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Rome, 2001), Vol. 153, 2003, pp. 395–410. Zbl1023.39015
  35. [35] W. Schoutens: Lévy-Sheffer and IID-Sheffer polynomials with applications to stochastic integrals”, In: Proceedings of the VIIIth Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997), Vol. 99, 1998, pp. 365–372. 
  36. [36] B. Şefik: “Coherent structures in nonlinear dynamical systems. Method of the random point functions”, In: Nonlinear evolution equations and dynamical systems (Baia Verde, 1991), World Sci. Publishing, River Edge, NJ, 1992, pp. 385–394. 
  37. [37] R. M. Shreshtha: “On generalised Charlier polynomials”, Nepali Math. Sci. Rep., 7(2), (1982), pp. 65–69. Zbl0537.33009
  38. [38] J. Spanier and K.B. Oldham: An Atlas of Functions, Hemisphere Pub. Corp., 1987. 
  39. [39] F.H. Szafraniec: “Charlier polynomials and translational invariance in the quantum harmonic oscillator”, Math. Nachr., Vol. 241, (2002), pp. 163–169. http://dx.doi.org/10.1002/1522-2616(200207)241:1<163::AID-MANA163>3.0.CO;2-W 
  40. [40] G. Szegő: Orthogonal polynomials, 4th ed., American Mathematical Society, Providence, R.I., 1975; American Mathematical Society, Colloquium Publications, Vol. XXIII. 
  41. [41] N.M. Temme and J.L. López: “The Askey scheme for hypergeometric orthogonal polynomials viewed from asymptotic analysis”, In: Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999), Vol. 133, 2001, pp. 623–633. Zbl0990.33010
  42. [42] T.T. Truong: “On a class of inhomogeneous Ising quantum chains”, J. Phys. A, Vol. 28(24), 1995, pp. 7089–7096. http://dx.doi.org/10.1088/0305-4470/28/24/009 
  43. [43] W. Van Assche and M. Foupouagnigni: “Analysis of non-linear recurrence relations for the recurrence coefficients of generalized Charlier polynomials”, J. Nonlinear Math. Phys., Vol. 10(suppl. 2), (2003), pp. 231–237. http://dx.doi.org/10.2991/jnmp.2003.10.s2.19 
  44. [44] J. Zeng: “The q-Stirling numbers, continued fractions and the q-Charlier and q-Laguerre polynomials”, J. Comput. Appl. Math., Vol. 57(3), (1995), pp. 413–424. http://dx.doi.org/10.1016/0377-0427(93)E0211-4 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.