Fractional BVPs with strong time singularities and the limit properties of their solutions
Open Mathematics (2014)
- Volume: 12, Issue: 11, page 1638-1655
 - ISSN: 2391-5455
 
Access Full Article
topAbstract
topHow to cite
topSvatoslav Staněk. "Fractional BVPs with strong time singularities and the limit properties of their solutions." Open Mathematics 12.11 (2014): 1638-1655. <http://eudml.org/doc/269803>.
@article{SvatoslavStaněk2014,
	abstract = {In the first part, we investigate the singular BVP \[\tfrac\{d\}\{\{dt\}\}^c D^\alpha u + (a/t)^c D^\alpha u = \mathcal \{H\}u\]
, u(0) = A, u(1) = B, c D α u(t)|t=0 = 0, where \[\mathcal \{H\}\]
is a continuous operator, α ∈ (0, 1) and a < 0. Here, c D denotes the Caputo fractional derivative. The existence result is proved by the Leray-Schauder nonlinear alternative. The second part establishes the relations between solutions of the sequence of problems \[\tfrac\{d\}\{\{dt\}\}^c D^\{\alpha \_n \} u + (a/t)^c D^\{\alpha \_n \} u = f(t,u,^c D^\{\beta \_n \} u)\]
, u(0) = A, u(1) = B, \[\left. \{^c D^\{\alpha \_n \} u(t)\} \right|\_\{t = 0\} = 0\]
where a < 0, 0 < β n ≤ α n < 1, limn→∞ β n = 1, and solutions of u″+(a/t)u′ = f(t, u, u′) satisfying the boundary conditions u(0) = A, u(1) = B, u′(0) = 0.},
	author = {Svatoslav Staněk},
	journal = {Open Mathematics},
	keywords = {Singular fractional differential equation; Time singularity; Caputo fractional derivative; Dirichlet conditions; Leray-Schauder alternative; Limit properties of solutions; singular fractional differential equation; time singularity; limit properties of solutions},
	language = {eng},
	number = {11},
	pages = {1638-1655},
	title = {Fractional BVPs with strong time singularities and the limit properties of their solutions},
	url = {http://eudml.org/doc/269803},
	volume = {12},
	year = {2014},
}
TY  - JOUR
AU  - Svatoslav Staněk
TI  - Fractional BVPs with strong time singularities and the limit properties of their solutions
JO  - Open Mathematics
PY  - 2014
VL  - 12
IS  - 11
SP  - 1638
EP  - 1655
AB  - In the first part, we investigate the singular BVP \[\tfrac{d}{{dt}}^c D^\alpha u + (a/t)^c D^\alpha u = \mathcal {H}u\]
, u(0) = A, u(1) = B, c D α u(t)|t=0 = 0, where \[\mathcal {H}\]
is a continuous operator, α ∈ (0, 1) and a < 0. Here, c D denotes the Caputo fractional derivative. The existence result is proved by the Leray-Schauder nonlinear alternative. The second part establishes the relations between solutions of the sequence of problems \[\tfrac{d}{{dt}}^c D^{\alpha _n } u + (a/t)^c D^{\alpha _n } u = f(t,u,^c D^{\beta _n } u)\]
, u(0) = A, u(1) = B, \[\left. {^c D^{\alpha _n } u(t)} \right|_{t = 0} = 0\]
where a < 0, 0 < β n ≤ α n < 1, limn→∞ β n = 1, and solutions of u″+(a/t)u′ = f(t, u, u′) satisfying the boundary conditions u(0) = A, u(1) = B, u′(0) = 0.
LA  - eng
KW  - Singular fractional differential equation; Time singularity; Caputo fractional derivative; Dirichlet conditions; Leray-Schauder alternative; Limit properties of solutions; singular fractional differential equation; time singularity; limit properties of solutions
UR  - http://eudml.org/doc/269803
ER  - 
References
top- [1] Abraham F.F., Homogeneous Nucleation Theory, Academic Press, New York, NY, 1974
 - [2] Bai Z., Qiu T., Existence of positive solution for singular fractional differential equation, Appl. Math. Comput., 2009, 215, 2761–2767 http://dx.doi.org/10.1016/j.amc.2009.09.017 Zbl1185.34004
 - [3] Bongiorno, B., Scriven, L.E., Davis H., Molecular theory of fluid interfaces, J. Colloid and Interface Sci. 1976, 57(3), 462–475 http://dx.doi.org/10.1016/0021-9797(76)90225-3
 - [4] A. Cabada, A., Staněk, S., Functional fractional boundary value problems with ϕ-Laplacian, Appl. Math. Comput., 2012, 219, 1383–1390 http://dx.doi.org/10.1016/j.amc.2012.07.062 Zbl1296.34013
 - [5] Caballero Mena, J., Harjani, J., Sadarangani, K., Positive solutions for a class of singular fractional boundary value problems, Comput. Math. Appl., 2011, 62, 1325–1332 http://dx.doi.org/10.1016/j.camwa.2011.04.013 Zbl1235.34010
 - [6] Deimling, K., Nonlinear Functional Analysis, Springer, Berlin, 1985 http://dx.doi.org/10.1007/978-3-662-00547-7 Zbl0559.47040
 - [7] Diethelm, K., The Analysis of Fractional Differential Equations, Lectures Notes in Mathematics, Springer, Berlin, 2010 http://dx.doi.org/10.1007/978-3-642-14574-2
 - [8] Feichtinger, A., Rachůnková, I., Staněk, S., Weinmüller, E., Periodic BVPs in ODRs with time singularities, Comput. Math. Appl., 2011, 62, 2058–2070 http://dx.doi.org/10.1016/j.camwa.2011.06.048 Zbl1231.34072
 - [9] Fife, P.C., Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, 28, Springer, 1979 Zbl0403.92004
 - [10] Ford, W.F., Pennline, J.A., Singular non-linear two-point boundary value problems: Existence and uniqueness, Nonlinear Anal., 2009, 71, 1059–1072 http://dx.doi.org/10.1016/j.na.2008.11.045 Zbl1172.34015
 - [11] Gatica, J.A., Oliker, V., Waltman, P., Singular nonlinear boundary value problems for second-order ordinary differential equations, J. Differential Equations, 1989, 79, 62–78 http://dx.doi.org/10.1016/0022-0396(89)90113-7 Zbl0685.34017
 - [12] Gouin, H., Rotoli, G., An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids, Mech. Research Communic., 1997, 24, 255–260 http://dx.doi.org/10.1016/S0093-6413(97)00022-0 Zbl0899.76064
 - [13] Hammerling, R., Koch, O., Simon. C., Weinmüller, E., Numerical solution of eigenvalue problems in electronic structure computations, J. Comp. Phys., 2010, 181, 1557–1561. Zbl1216.65096
 - [14] Jleli, M., Samet, B., On positive solutions for a class of singular nonlinear fractional differential equations, Bound. Value Probl. 2012, 2012:73 http://www.boundaryvalueproblems.com/content/2012/1/73 http://dx.doi.org/10.1186/1687-2770-2012-73
 - [15] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Elsevier B.V., Amsterdam, The Netherlands, 2006 Zbl1092.45003
 - [16] Klimek, K., Agarwal, O.P., Fractional Sturm-Liouville problem, Comput. Math. Appl., 2013, 66, 795–812 http://dx.doi.org/10.1016/j.camwa.2012.12.011
 - [17] Kitzhofer, G., Koch, O., Lima, P., Weinmüller, E., Efficient numerical solution of the density profile equation in hydrodynamics, J. Sci. Comp., 2007, 32, 411–424 http://dx.doi.org/10.1007/s10915-007-9141-0 Zbl1178.76280
 - [18] Linde, A.P., Particle Physics and Inflationary Cosmology, Harwood Academic, Chur, Switzerland, 1990
 - [19] Liu, B., Liu. Y., Positive solutions of a two-point boundary value problem for singular fractional differential equations in Banach space, J. Funct. Spaces and Appl., 2013, # 585639 Zbl1275.34009
 - [20] Liu, Y., Nieto, J.J., Otero-Zarraquinos, Ò., Existence results for a coupled system of nonlinear singular fractional differential equations with impulse effects, Math. Probl. Eng., 2013, # 498781 Zbl1296.34024
 - [21] Qiu, T., Bai, Z., Existence of positive solutions for singular fractional differential equations, Electron. J. Differential Equations, 2008 (146) (2008) Zbl1172.34313
 - [22] Rachůnková, I., Staněk, S., Weinmüller, E., and Zenz, M., Limit properties of solutions of singular second-order differential equations, Bound. Value Probl. 2009 (2009) 28, # 905769 Zbl1189.34048
 - [23] Rachůnková, I., Staněk, S., Weinmüller, E., Zenz, M., Neumann problems with time singularities, Comput. Math. Appl., 2010, 60, 722–733 http://dx.doi.org/10.1016/j.camwa.2010.05.019 Zbl1201.34038
 - [24] Staněk, S., Limit properties of positive solutions of fractional boundary value problems, Appl. Math. Comput., 2012, 219, 2361–2370. http://dx.doi.org/10.1016/j.amc.2012.09.008 Zbl1308.34104
 - [25] Stojanovic, M., Singular fractional evolution differential equations, Cent. Eur. J. Phys., (in press)
 - [26] Su, X., Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 2009, 22, 64–69 http://dx.doi.org/10.1016/j.aml.2008.03.001 Zbl1163.34321
 - [27] Vong, S., Positive solutions of singular fractional differential equations with integral boundary conditions, Math. Comput. Modelling, 2013, 57, 1053–1059. http://dx.doi.org/10.1016/j.mcm.2012.06.024
 - [28] Wang, C., Wand, R., Wang, S., Yang, C., Positive solution of singular boundary value problem for a nonlinear fractional differential equation, Bound. Value Probl. 2011, # 297026
 - [29] Zhang, S., Nonnegative solution for singular nonlinear fractional differential equation with coefficient that changes sign, Positivity, 2008, 12, 711–724 http://dx.doi.org/10.1007/s11117-008-2030-4 Zbl1172.26306
 - [30] Zhang, X., Liu, L., Wu, Y., The uniqueness of positive solution for a singular fractional differential system involving derivatives, Commun. Nonlinear Sci. Numer. Simulat., 2013, 18, 1400–1409 http://dx.doi.org/10.1016/j.cnsns.2012.08.033 Zbl1283.34006
 - [31] Zhou, W., Positive solutions for a singular second order boundary value problem, Appl. Math. E-Notes, 2009, 9, 154–159 Zbl1178.34032
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.