Page 1 Next

Displaying 1 – 20 of 131

Showing per page

A new characteristic property of Mittag-Leffler functions and fractional cosine functions

Zhan-Dong Mei, Ji-Gen Peng, Jun-Xiong Jia (2014)

Studia Mathematica

A new characteristic property of the Mittag-Leffler function E α ( a t α ) with 1 < α < 2 is deduced. Motivated by this property, a new notion, named α-order cosine function, is developed. It is proved that an α-order cosine function is associated with a solution operator of an α-order abstract Cauchy problem. Consequently, an α-order abstract Cauchy problem is well-posed if and only if its coefficient operator generates a unique α-order cosine function.

A Poster about the Old History of Fractional Calculus

Tenreiro Machado, J., Kiryakova, Virginia, Mainardi, Francesco (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22The fractional calculus (FC) is an area of intensive research and development. In a previous paper and poster we tried to exhibit its recent state, surveying the period of 1966-2010. The poster accompanying the present note illustrates the major contributions during the period 1695-1970, the "old history" of FC.

A Poster about the Recent History of Fractional Calculus

Machado, Tenreiro, Kiryakova, Virginia, Mainardi, Francesco (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22In the last decades fractional calculus became an area of intense re-search and development. The accompanying poster illustrates the major contributions during the period 1966-2010.

An analysis of the stability boundary for a linear fractional difference system

Tomáš Kisela (2015)

Mathematica Bohemica

This paper deals with basic stability properties of a two-term linear autonomous fractional difference system involving the Riemann-Liouville difference. In particular, we focus on the case when eigenvalues of the system matrix lie on a boundary curve separating asymptotic stability and unstability regions. This issue was posed as an open problem in the paper J. Čermák, T. Kisela, and L. Nechvátal (2013). Thus, the paper completes the stability analysis of the corresponding fractional difference...

Chaos synchronization of a fractional nonautonomous system

Zakia Hammouch, Toufik Mekkaoui (2014)

Nonautonomous Dynamical Systems

In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the effectiveness of the proposed methods.

Conflict-Controlled Processes Involving Fractional Differential Equations with Impulses

Matychyn, Ivan, Chikrii, Arkadii, Onyshchenko, Viktoriia (2012)

Mathematica Balkanica New Series

MSC 2010: 34A08, 34A37, 49N70Here we investigate a problem of approaching terminal (target) set by a system of impulse differential equations of fractional order in the sense of Caputo. The system is under control of two players pursuing opposite goals. The first player tries to bring the trajectory of the system to the terminal set in the shortest time, whereas the second player tries to maximally put off the instant when the trajectory hits the set, or even avoid this meeting at all. We derive...

Controllability of nonlinear implicit fractional integrodifferential systems

Krishnan Balachandran, Shanmugam Divya (2014)

International Journal of Applied Mathematics and Computer Science

In this paper, we study the controllability of nonlinear fractional integrodifferential systems with implicit fractional derivative. Sufficient conditions for controllability results are obtained through the notion of the measure of noncompactness of a set and Darbo's fixed point theorem. Examples are included to verify the result.

Currently displaying 1 – 20 of 131

Page 1 Next