Cardinality of height function’s range in case of maximally many rectangular islands - computed by cuts

Eszter Horváth; Branimir Šešelja; Andreja Tepavčević

Open Mathematics (2013)

  • Volume: 11, Issue: 2, page 296-307
  • ISSN: 2391-5455

Abstract

top
We deal with rectangular m×n boards of square cells, using the cut technics of the height function. We investigate combinatorial properties of this function, and in particular we give lower and upper bounds for the number of essentially different cuts. This number turns out to be the cardinality of the height function’s range, in case the height function has maximally many rectangular islands.

How to cite

top

Eszter Horváth, Branimir Šešelja, and Andreja Tepavčević. "Cardinality of height function’s range in case of maximally many rectangular islands - computed by cuts." Open Mathematics 11.2 (2013): 296-307. <http://eudml.org/doc/269807>.

@article{EszterHorváth2013,
abstract = {We deal with rectangular m×n boards of square cells, using the cut technics of the height function. We investigate combinatorial properties of this function, and in particular we give lower and upper bounds for the number of essentially different cuts. This number turns out to be the cardinality of the height function’s range, in case the height function has maximally many rectangular islands.},
author = {Eszter Horváth, Branimir Šešelja, Andreja Tepavčević},
journal = {Open Mathematics},
keywords = {Rectangular islands; Height function; Cut relations; rectangular islands; height function; cut relations},
language = {eng},
number = {2},
pages = {296-307},
title = {Cardinality of height function’s range in case of maximally many rectangular islands - computed by cuts},
url = {http://eudml.org/doc/269807},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Eszter Horváth
AU - Branimir Šešelja
AU - Andreja Tepavčević
TI - Cardinality of height function’s range in case of maximally many rectangular islands - computed by cuts
JO - Open Mathematics
PY - 2013
VL - 11
IS - 2
SP - 296
EP - 307
AB - We deal with rectangular m×n boards of square cells, using the cut technics of the height function. We investigate combinatorial properties of this function, and in particular we give lower and upper bounds for the number of essentially different cuts. This number turns out to be the cardinality of the height function’s range, in case the height function has maximally many rectangular islands.
LA - eng
KW - Rectangular islands; Height function; Cut relations; rectangular islands; height function; cut relations
UR - http://eudml.org/doc/269807
ER -

References

top
  1. [1] Barát J., Hajnal P., Horváth E.K., Elementary proof techniques for the maximum number of islands, European J. Combin., 2011, 32(2), 276–281 http://dx.doi.org/10.1016/j.ejc.2010.10.001 Zbl1227.05006
  2. [2] Czédli G., The number of rectangular islands by means of distributive lattices, European J. Combin., 2009, 30(1), 208–215 http://dx.doi.org/10.1016/j.ejc.2008.02.005 Zbl1187.05024
  3. [3] Czédli G., Hartmann M., Schmidt E.T., CD-independent subsets in distributive lattices, Publ. Math. Debrecen, 2009, 74(1–2), 127–134 Zbl1199.06032
  4. [4] Czédli G., Schmidt E.T., CDW-independent subsets in distributive lattices, Acta Sci. Math. (Szeged), 2009, 75(1–2), 49–53 Zbl1199.06033
  5. [5] Foldes S., Singhi N.M., On instantaneous codes, J. Comb. Inf. Syst. Sci., 2006, 31(1–4), 307–316 Zbl1278.94037
  6. [6] Gerstenkorn T., Tepavčevic A., Lattice valued intuitionistic fuzzy sets, Cent. Eur. J. Math., 2004, 2(3), 388–398 http://dx.doi.org/10.2478/BF02475236 Zbl1060.03074
  7. [7] Horváth E.K., Horváth G., Németh Z., Szabó Cs., The number of square islands on a rectangular sea, Acta Sci. Math. (Szeged), 2010, 76(1–2), 35–48 Zbl1224.05025
  8. [8] Horváth E.K., Máder A., Tepavčevic A., One-dimensional Czédli-type islands, College Math. J., 2011, 42(5), 374–378 http://dx.doi.org/10.4169/college.math.j.42.5.374 
  9. [9] Horváth E.K., Németh Z., Pluhár G., The number of triangular islands on a triangular grid, Period. Math. Hungar., 2009, 58(1), 25–34 http://dx.doi.org/10.1007/s10998-009-9025-7 Zbl1199.05012
  10. [10] Horváth E.K., Šešelja B., Tepavčevic A., Cut approach to islands in rectangular fuzzy relations, Fuzzy Sets and Systems, 2010, 161(24), 3114–3126 http://dx.doi.org/10.1016/j.fss.2010.04.019 Zbl1214.03039
  11. [11] Lengvárszky Zs., The minimum cardinality of maximal systems of rectangular islands, European J. Combin., 2009, 30(1), 216–219 http://dx.doi.org/10.1016/j.ejc.2008.02.006 Zbl1197.05019
  12. [12] Lengvárszky Zs., Notes on systems of triangular islands, Acta Sci. Math. (Szeged), 2009, 75(3–4), 369–376 
  13. [13] Lengvárszky Zs., The size of maximal systems of square islands, European J. Combin., 2009, 30(4), 889–892 http://dx.doi.org/10.1016/j.ejc.2008.07.023 Zbl1194.05016
  14. [14] Lengvárszky Zs., Pach P.P., A note on systems of rectangular islands: the continuous case, Acta Sci. Math. (Szeged), 2011, 77(1–2), 27–34 Zbl1249.05005
  15. [15] Máder A., Makay G., The maximum number of rectangular islands, Teach. Math., 2011, 13(1), 31–44 
  16. [16] Máder A., Vajda R., Elementary approaches to the teaching of the combinatorial problem of rectangular islands, International Journal of Computers for Mathematical Learning, 2010, 15(3), 267–281 http://dx.doi.org/10.1007/s10758-010-9171-9 
  17. [17] Pach P.P., Pluhár G., Pongrácz A., Szabó Cs., The possible number of islands on the sea, J. Math. Anal. Appl., 2011, 375(1), 8–13 http://dx.doi.org/10.1016/j.jmaa.2010.08.012 Zbl1291.05020
  18. [18] Pluhár G., The number of brick islands by means of distributive lattices, Acta Sci. Math. (Szeged), 2009, 75(1–2), 3–11 Zbl1195.05005
  19. [19] Šešelja B., Tepavčevic A., Completion of ordered structures by cuts of fuzzy sets: an overview, Fuzzy Sets and Systems, 2003, 136(1), 1–19 http://dx.doi.org/10.1016/S0165-0114(02)00365-2 Zbl1020.06005
  20. [20] Šešelja B., Tepavčevic A., Representing ordered structures by fuzzy sets: an overview, Fuzzy Sets and Systems, 2003, 136(1), 21–39 http://dx.doi.org/10.1016/S0165-0114(02)00366-4 Zbl1026.03039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.