Cardinality of height function’s range in case of maximally many rectangular islands - computed by cuts
Eszter Horváth; Branimir Šešelja; Andreja Tepavčević
Open Mathematics (2013)
- Volume: 11, Issue: 2, page 296-307
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topEszter Horváth, Branimir Šešelja, and Andreja Tepavčević. "Cardinality of height function’s range in case of maximally many rectangular islands - computed by cuts." Open Mathematics 11.2 (2013): 296-307. <http://eudml.org/doc/269807>.
@article{EszterHorváth2013,
abstract = {We deal with rectangular m×n boards of square cells, using the cut technics of the height function. We investigate combinatorial properties of this function, and in particular we give lower and upper bounds for the number of essentially different cuts. This number turns out to be the cardinality of the height function’s range, in case the height function has maximally many rectangular islands.},
author = {Eszter Horváth, Branimir Šešelja, Andreja Tepavčević},
journal = {Open Mathematics},
keywords = {Rectangular islands; Height function; Cut relations; rectangular islands; height function; cut relations},
language = {eng},
number = {2},
pages = {296-307},
title = {Cardinality of height function’s range in case of maximally many rectangular islands - computed by cuts},
url = {http://eudml.org/doc/269807},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Eszter Horváth
AU - Branimir Šešelja
AU - Andreja Tepavčević
TI - Cardinality of height function’s range in case of maximally many rectangular islands - computed by cuts
JO - Open Mathematics
PY - 2013
VL - 11
IS - 2
SP - 296
EP - 307
AB - We deal with rectangular m×n boards of square cells, using the cut technics of the height function. We investigate combinatorial properties of this function, and in particular we give lower and upper bounds for the number of essentially different cuts. This number turns out to be the cardinality of the height function’s range, in case the height function has maximally many rectangular islands.
LA - eng
KW - Rectangular islands; Height function; Cut relations; rectangular islands; height function; cut relations
UR - http://eudml.org/doc/269807
ER -
References
top- [1] Barát J., Hajnal P., Horváth E.K., Elementary proof techniques for the maximum number of islands, European J. Combin., 2011, 32(2), 276–281 http://dx.doi.org/10.1016/j.ejc.2010.10.001 Zbl1227.05006
- [2] Czédli G., The number of rectangular islands by means of distributive lattices, European J. Combin., 2009, 30(1), 208–215 http://dx.doi.org/10.1016/j.ejc.2008.02.005 Zbl1187.05024
- [3] Czédli G., Hartmann M., Schmidt E.T., CD-independent subsets in distributive lattices, Publ. Math. Debrecen, 2009, 74(1–2), 127–134 Zbl1199.06032
- [4] Czédli G., Schmidt E.T., CDW-independent subsets in distributive lattices, Acta Sci. Math. (Szeged), 2009, 75(1–2), 49–53 Zbl1199.06033
- [5] Foldes S., Singhi N.M., On instantaneous codes, J. Comb. Inf. Syst. Sci., 2006, 31(1–4), 307–316 Zbl1278.94037
- [6] Gerstenkorn T., Tepavčevic A., Lattice valued intuitionistic fuzzy sets, Cent. Eur. J. Math., 2004, 2(3), 388–398 http://dx.doi.org/10.2478/BF02475236 Zbl1060.03074
- [7] Horváth E.K., Horváth G., Németh Z., Szabó Cs., The number of square islands on a rectangular sea, Acta Sci. Math. (Szeged), 2010, 76(1–2), 35–48 Zbl1224.05025
- [8] Horváth E.K., Máder A., Tepavčevic A., One-dimensional Czédli-type islands, College Math. J., 2011, 42(5), 374–378 http://dx.doi.org/10.4169/college.math.j.42.5.374
- [9] Horváth E.K., Németh Z., Pluhár G., The number of triangular islands on a triangular grid, Period. Math. Hungar., 2009, 58(1), 25–34 http://dx.doi.org/10.1007/s10998-009-9025-7 Zbl1199.05012
- [10] Horváth E.K., Šešelja B., Tepavčevic A., Cut approach to islands in rectangular fuzzy relations, Fuzzy Sets and Systems, 2010, 161(24), 3114–3126 http://dx.doi.org/10.1016/j.fss.2010.04.019 Zbl1214.03039
- [11] Lengvárszky Zs., The minimum cardinality of maximal systems of rectangular islands, European J. Combin., 2009, 30(1), 216–219 http://dx.doi.org/10.1016/j.ejc.2008.02.006 Zbl1197.05019
- [12] Lengvárszky Zs., Notes on systems of triangular islands, Acta Sci. Math. (Szeged), 2009, 75(3–4), 369–376
- [13] Lengvárszky Zs., The size of maximal systems of square islands, European J. Combin., 2009, 30(4), 889–892 http://dx.doi.org/10.1016/j.ejc.2008.07.023 Zbl1194.05016
- [14] Lengvárszky Zs., Pach P.P., A note on systems of rectangular islands: the continuous case, Acta Sci. Math. (Szeged), 2011, 77(1–2), 27–34 Zbl1249.05005
- [15] Máder A., Makay G., The maximum number of rectangular islands, Teach. Math., 2011, 13(1), 31–44
- [16] Máder A., Vajda R., Elementary approaches to the teaching of the combinatorial problem of rectangular islands, International Journal of Computers for Mathematical Learning, 2010, 15(3), 267–281 http://dx.doi.org/10.1007/s10758-010-9171-9
- [17] Pach P.P., Pluhár G., Pongrácz A., Szabó Cs., The possible number of islands on the sea, J. Math. Anal. Appl., 2011, 375(1), 8–13 http://dx.doi.org/10.1016/j.jmaa.2010.08.012 Zbl1291.05020
- [18] Pluhár G., The number of brick islands by means of distributive lattices, Acta Sci. Math. (Szeged), 2009, 75(1–2), 3–11 Zbl1195.05005
- [19] Šešelja B., Tepavčevic A., Completion of ordered structures by cuts of fuzzy sets: an overview, Fuzzy Sets and Systems, 2003, 136(1), 1–19 http://dx.doi.org/10.1016/S0165-0114(02)00365-2 Zbl1020.06005
- [20] Šešelja B., Tepavčevic A., Representing ordered structures by fuzzy sets: an overview, Fuzzy Sets and Systems, 2003, 136(1), 21–39 http://dx.doi.org/10.1016/S0165-0114(02)00366-4 Zbl1026.03039
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.