Extremal Unicyclic Graphs With Minimal Distance Spectral Radius
Hongyan Lu; Jing Luo; Zhongxun Zhu
Discussiones Mathematicae Graph Theory (2014)
- Volume: 34, Issue: 4, page 735-749
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topHongyan Lu, Jing Luo, and Zhongxun Zhu. "Extremal Unicyclic Graphs With Minimal Distance Spectral Radius." Discussiones Mathematicae Graph Theory 34.4 (2014): 735-749. <http://eudml.org/doc/269819>.
@article{HongyanLu2014,
abstract = {The distance spectral radius ρ(G) of a graph G is the largest eigenvalue of the distance matrix D(G). Let U (n,m) be the class of unicyclic graphs of order n with given matching number m (m ≠ 3). In this paper, we determine the extremal unicyclic graph which has minimal distance spectral radius in U (n,m) Cn.},
author = {Hongyan Lu, Jing Luo, Zhongxun Zhu},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {distance matrix; distance spectral radius; unicyclic graph; matching.; matching},
language = {eng},
number = {4},
pages = {735-749},
title = {Extremal Unicyclic Graphs With Minimal Distance Spectral Radius},
url = {http://eudml.org/doc/269819},
volume = {34},
year = {2014},
}
TY - JOUR
AU - Hongyan Lu
AU - Jing Luo
AU - Zhongxun Zhu
TI - Extremal Unicyclic Graphs With Minimal Distance Spectral Radius
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 4
SP - 735
EP - 749
AB - The distance spectral radius ρ(G) of a graph G is the largest eigenvalue of the distance matrix D(G). Let U (n,m) be the class of unicyclic graphs of order n with given matching number m (m ≠ 3). In this paper, we determine the extremal unicyclic graph which has minimal distance spectral radius in U (n,m) Cn.
LA - eng
KW - distance matrix; distance spectral radius; unicyclic graph; matching.; matching
UR - http://eudml.org/doc/269819
ER -
References
top- [1] A.T. Balaban, D. Ciubotariu and M. Medeleanu, Topological indices and real number vertex invariants based on graph eigenvalues or eigenvectors, J. Chem. Inf. Comput. Sci. 31 (1991) 517-523. doi:10.1021/ci00004a014
- [2] R.B. Bapat, Distance matrix and Laplacian of a tree with attached graphs, Linear Algebra Appl. 411 (2005) 295-308. doi:10.1016/j.laa.2004.06.017 Zbl1075.05052
- [3] R.B. Bapat, S.J. Kirkland and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193-209. doi:10.1016/j.laa.2004.05.011 Zbl1064.05097
- [4] B. Bollob´as, Modern Graph Theory (Springer-Verlag, 1998). doi:10.1007/978-1-4612-0619-4
- [5] V. Consonni and R. Todeschini, New spectral indices for molecule description, MATCH Commun. Math. Comput. Chem. 60 (2008) 3-14. Zbl1273.92080
- [6] I. Gutman and M. Medeleanu, On the structure-dependence of the largest eigenvalue of the distance matrix of an alkane, Indian J. Chem. (A) 37 (1998) 569-573.
- [7] A. Ilić, Distance spectral radius of trees with given matching number , Discrete Appl. Math. 158 (2010) 1799-1806. doi:10.1016/j.dam.2010.06.018 Zbl1208.05018
- [8] G. Indulal, Sharp bounds on the distance spectral radius and the distance energy of graphs, Linear Algebra Appl. 430 (2009) 106-113. doi:10.1016/j.laa.2008.07.005 Zbl1165.05019
- [9] Z. Liu, On spectral radius of the distance matrix , Appl. Anal. Discrete Math. 4 (2010) 269-277. doi:10.2298/AADM100428020L Zbl1265.05434
- [10] D. Stevanović and A. Ili´c, Distance spectral radius of trees with fixed maximum degree, Electron. J. Linear Algebra 20 (2010) 168-179. Zbl1189.05050
- [11] G. Yu, Y. Wu, Y. Zhang and J. Shu, Some graft transformations and its application on a distance spectrum, Discrete Math. 311 (2011) 2117-2123. doi:10.1016/j.disc.2011.05.040 Zbl1226.05112
- [12] X. Zhang and C. Godsil, Connectivity and minimal distance spectral radius, Linear Multilinear Algebra 59 (2011) 745-754. doi:10.1080/03081087.2010.499512
- [13] B. Zhou, On the largest eigenvalue of the distance matrix of a tree, MATCH Com- mun. Math. Comput. Chem. 58 (2007) 657-662. Zbl1199.05102
- [14] B. Zhou and N. Trinajsti´c, On the largest eigenvalue of the distance matrix of a connected graph, Chem. Phys. Lett. 447 (2007) 384-387. doi:10.1016/j.cplett.2007.09.048
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.