Extremal Unicyclic Graphs With Minimal Distance Spectral Radius

Hongyan Lu; Jing Luo; Zhongxun Zhu

Discussiones Mathematicae Graph Theory (2014)

  • Volume: 34, Issue: 4, page 735-749
  • ISSN: 2083-5892

Abstract

top
The distance spectral radius ρ(G) of a graph G is the largest eigenvalue of the distance matrix D(G). Let U (n,m) be the class of unicyclic graphs of order n with given matching number m (m ≠ 3). In this paper, we determine the extremal unicyclic graph which has minimal distance spectral radius in U (n,m) Cn.

How to cite

top

Hongyan Lu, Jing Luo, and Zhongxun Zhu. "Extremal Unicyclic Graphs With Minimal Distance Spectral Radius." Discussiones Mathematicae Graph Theory 34.4 (2014): 735-749. <http://eudml.org/doc/269819>.

@article{HongyanLu2014,
abstract = {The distance spectral radius ρ(G) of a graph G is the largest eigenvalue of the distance matrix D(G). Let U (n,m) be the class of unicyclic graphs of order n with given matching number m (m ≠ 3). In this paper, we determine the extremal unicyclic graph which has minimal distance spectral radius in U (n,m) Cn.},
author = {Hongyan Lu, Jing Luo, Zhongxun Zhu},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {distance matrix; distance spectral radius; unicyclic graph; matching.; matching},
language = {eng},
number = {4},
pages = {735-749},
title = {Extremal Unicyclic Graphs With Minimal Distance Spectral Radius},
url = {http://eudml.org/doc/269819},
volume = {34},
year = {2014},
}

TY - JOUR
AU - Hongyan Lu
AU - Jing Luo
AU - Zhongxun Zhu
TI - Extremal Unicyclic Graphs With Minimal Distance Spectral Radius
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 4
SP - 735
EP - 749
AB - The distance spectral radius ρ(G) of a graph G is the largest eigenvalue of the distance matrix D(G). Let U (n,m) be the class of unicyclic graphs of order n with given matching number m (m ≠ 3). In this paper, we determine the extremal unicyclic graph which has minimal distance spectral radius in U (n,m) Cn.
LA - eng
KW - distance matrix; distance spectral radius; unicyclic graph; matching.; matching
UR - http://eudml.org/doc/269819
ER -

References

top
  1. [1] A.T. Balaban, D. Ciubotariu and M. Medeleanu, Topological indices and real number vertex invariants based on graph eigenvalues or eigenvectors, J. Chem. Inf. Comput. Sci. 31 (1991) 517-523. doi:10.1021/ci00004a014 
  2. [2] R.B. Bapat, Distance matrix and Laplacian of a tree with attached graphs, Linear Algebra Appl. 411 (2005) 295-308. doi:10.1016/j.laa.2004.06.017 Zbl1075.05052
  3. [3] R.B. Bapat, S.J. Kirkland and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193-209. doi:10.1016/j.laa.2004.05.011 Zbl1064.05097
  4. [4] B. Bollob´as, Modern Graph Theory (Springer-Verlag, 1998). doi:10.1007/978-1-4612-0619-4 
  5. [5] V. Consonni and R. Todeschini, New spectral indices for molecule description, MATCH Commun. Math. Comput. Chem. 60 (2008) 3-14. Zbl1273.92080
  6. [6] I. Gutman and M. Medeleanu, On the structure-dependence of the largest eigenvalue of the distance matrix of an alkane, Indian J. Chem. (A) 37 (1998) 569-573. 
  7. [7] A. Ilić, Distance spectral radius of trees with given matching number , Discrete Appl. Math. 158 (2010) 1799-1806. doi:10.1016/j.dam.2010.06.018 Zbl1208.05018
  8. [8] G. Indulal, Sharp bounds on the distance spectral radius and the distance energy of graphs, Linear Algebra Appl. 430 (2009) 106-113. doi:10.1016/j.laa.2008.07.005 Zbl1165.05019
  9. [9] Z. Liu, On spectral radius of the distance matrix , Appl. Anal. Discrete Math. 4 (2010) 269-277. doi:10.2298/AADM100428020L Zbl1265.05434
  10. [10] D. Stevanović and A. Ili´c, Distance spectral radius of trees with fixed maximum degree, Electron. J. Linear Algebra 20 (2010) 168-179. Zbl1189.05050
  11. [11] G. Yu, Y. Wu, Y. Zhang and J. Shu, Some graft transformations and its application on a distance spectrum, Discrete Math. 311 (2011) 2117-2123. doi:10.1016/j.disc.2011.05.040 Zbl1226.05112
  12. [12] X. Zhang and C. Godsil, Connectivity and minimal distance spectral radius, Linear Multilinear Algebra 59 (2011) 745-754. doi:10.1080/03081087.2010.499512 
  13. [13] B. Zhou, On the largest eigenvalue of the distance matrix of a tree, MATCH Com- mun. Math. Comput. Chem. 58 (2007) 657-662. Zbl1199.05102
  14. [14] B. Zhou and N. Trinajsti´c, On the largest eigenvalue of the distance matrix of a connected graph, Chem. Phys. Lett. 447 (2007) 384-387. doi:10.1016/j.cplett.2007.09.048 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.