A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations

Jiří Neustupa

Mathematica Bohemica (2014)

  • Volume: 139, Issue: 4, page 685-698
  • ISSN: 0862-7959

Abstract

top
We deal with a suitable weak solution ( 𝐯 , p ) to the Navier-Stokes equations in a domain Ω 3 . We refine the criterion for the local regularity of this solution at the point ( 𝐟 x 0 , t 0 ) , which uses the L 3 -norm of 𝐯 and the L 3 / 2 -norm of p in a shrinking backward parabolic neighbourhood of ( 𝐱 0 , t 0 ) . The refinement consists in the fact that only the values of 𝐯 , respectively p , in the exterior of a space-time paraboloid with vertex at ( 𝐱 0 , t 0 ) , respectively in a ”small” subset of this exterior, are considered. The consequence is that a singularity cannot appear at the point ( 𝐱 0 , t 0 ) if 𝐯 and p are “smooth” outside the paraboloid.

How to cite

top

Neustupa, Jiří. "A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations." Mathematica Bohemica 139.4 (2014): 685-698. <http://eudml.org/doc/269831>.

@article{Neustupa2014,
abstract = {We deal with a suitable weak solution $(\mathbf \{v\},p)$ to the Navier-Stokes equations in a domain $\Omega \subset \mathbb \{R\}^3$. We refine the criterion for the local regularity of this solution at the point $(\mathbf \{f\}x_0,t_0)$, which uses the $L^3$-norm of $\mathbf \{v\}$ and the $L^\{3/2\}$-norm of $p$ in a shrinking backward parabolic neighbourhood of $(\mathbf \{x\}_0,t_0)$. The refinement consists in the fact that only the values of $\mathbf \{v\}$, respectively $p$, in the exterior of a space-time paraboloid with vertex at $(\mathbf \{x\}_0,t_0)$, respectively in a ”small” subset of this exterior, are considered. The consequence is that a singularity cannot appear at the point $(\mathbf \{x\}_0,t_0)$ if $\mathbf \{v\}$ and $p$ are “smooth” outside the paraboloid.},
author = {Neustupa, Jiří},
journal = {Mathematica Bohemica},
keywords = {Navier-Stokes equation; suitable weak solution; regularity; Navier-Stokes equation; suitable weak solution; regularity},
language = {eng},
number = {4},
pages = {685-698},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations},
url = {http://eudml.org/doc/269831},
volume = {139},
year = {2014},
}

TY - JOUR
AU - Neustupa, Jiří
TI - A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 4
SP - 685
EP - 698
AB - We deal with a suitable weak solution $(\mathbf {v},p)$ to the Navier-Stokes equations in a domain $\Omega \subset \mathbb {R}^3$. We refine the criterion for the local regularity of this solution at the point $(\mathbf {f}x_0,t_0)$, which uses the $L^3$-norm of $\mathbf {v}$ and the $L^{3/2}$-norm of $p$ in a shrinking backward parabolic neighbourhood of $(\mathbf {x}_0,t_0)$. The refinement consists in the fact that only the values of $\mathbf {v}$, respectively $p$, in the exterior of a space-time paraboloid with vertex at $(\mathbf {x}_0,t_0)$, respectively in a ”small” subset of this exterior, are considered. The consequence is that a singularity cannot appear at the point $(\mathbf {x}_0,t_0)$ if $\mathbf {v}$ and $p$ are “smooth” outside the paraboloid.
LA - eng
KW - Navier-Stokes equation; suitable weak solution; regularity; Navier-Stokes equation; suitable weak solution; regularity
UR - http://eudml.org/doc/269831
ER -

References

top
  1. Caffarelli, L., Kohn, R., Nirenberg, L., 10.1002/cpa.3160350604, Commun. Pure Appl. Math. 35 (1982), 771-831. (1982) Zbl0509.35067MR0673830DOI10.1002/cpa.3160350604
  2. Farwig, R., Kozono, H., Sohr, H., Criteria of local in time regularity of the Navier-Stokes equations beyond Serrin's condition, Parabolic and Navier-Stokes Equations. Part 1. Proceedings of the confererence, Będlewo, Poland, 2006 Banach Center Publ. 81 Polish Academy of Sciences, Institute of Mathematics, Warsaw (2008), 175-184 J. Rencławowicz et al. (2008) Zbl1154.35416MR2549330
  3. Farwig, R., Kozono, H., Sohr, H., 10.1007/BF02588049, Acta Math. 195 (2005), 21-53. (2005) Zbl1111.35033MR2233684DOI10.1007/BF02588049
  4. Kučera, P., Skalák, Z., 10.1023/B:APOM.0000024492.23444.29, Appl. Math., Praha 48 (2003), 537-545. (2003) Zbl1099.35099MR2025962DOI10.1023/B:APOM.0000024492.23444.29
  5. Ladyzhenskaya, O. A., Seregin, G. A., 10.1007/s000210050015, J. Math. Fluid Mech. 1 (1999), 356-387. (1999) Zbl0954.35129MR1738171DOI10.1007/s000210050015
  6. Lin, F., 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A, Commun. Pure Appl. Math. 51 (1998), 241-257. (1998) Zbl0958.35102MR1488514DOI10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
  7. Nečas, J., Neustupa, J., 10.1007/s00021-002-8544-9, J. Math. Fluid Mech. 4 (2002), 237-256. (2002) Zbl1010.35081MR1932862DOI10.1007/s00021-002-8544-9
  8. Neustupa, J., 10.3934/dcdss.2013.6.1391, Discrete Contin. Dyn. Syst., Ser. S 6 (2013), 1391-1400. (2013) Zbl1260.35125MR3039705DOI10.3934/dcdss.2013.6.1391
  9. Neustupa, J., 10.1007/s00205-014-0761-x, Arch. Ration. Mech. Anal. 214 (2014), 525-544. (2014) Zbl1304.35502MR3255699DOI10.1007/s00205-014-0761-x
  10. Neustupa, J., 10.1088/0951-7715/25/6/1695, Nonlinearity 25 (2012), 1695-1708. (2012) Zbl1245.35085MR2924731DOI10.1088/0951-7715/25/6/1695
  11. Scheffer, V., 10.1007/BF01626512, Commun. Math. Phys. 55 (1977), 97-112. (1977) Zbl0357.35071MR0510154DOI10.1007/BF01626512
  12. Seregin, G., Šverák, V., 10.1007/s10958-005-0383-9, J. Math. Sci., New York 130 (2005), 4884-4892 translated from Zap. Nauchn. Semin. POMI 306 (2003), 186-198. (2003) MR2065503DOI10.1007/s10958-005-0383-9
  13. Seregin, G. A., 10.1070/RM2007v062n03ABEH004415, Russ. Math. Surv. 62 (2007), 595-614 translated from Usp. Mat. Nauk 62 149-168 (2007). (2007) Zbl1139.76018MR2355422DOI10.1070/RM2007v062n03ABEH004415
  14. Sohr, H., Wahl, W. von, 10.1007/BF01210782, Arch. Math. 46 (1986), 428-439. (1986) MR0847086DOI10.1007/BF01210782
  15. Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. (1976) Zbl0353.46018MR0463908
  16. Wolf, J., A new criterion for partial regularity of suitable weak solutions to the Navier-Stokes equations, Advances in Mathematical Fluid Mechanics. Selected papers of the international conference on mathematical fluid mechanics, Estoril, Portugal, 2007 Springer Berlin 613-630 (2010), R. Rannacher et al. (2010) MR2665054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.