A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations
Mathematica Bohemica (2014)
- Volume: 139, Issue: 4, page 685-698
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topNeustupa, Jiří. "A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations." Mathematica Bohemica 139.4 (2014): 685-698. <http://eudml.org/doc/269831>.
@article{Neustupa2014,
abstract = {We deal with a suitable weak solution $(\mathbf \{v\},p)$ to the Navier-Stokes equations in a domain $\Omega \subset \mathbb \{R\}^3$. We refine the criterion for the local regularity of this solution at the point $(\mathbf \{f\}x_0,t_0)$, which uses the $L^3$-norm of $\mathbf \{v\}$ and the $L^\{3/2\}$-norm of $p$ in a shrinking backward parabolic neighbourhood of $(\mathbf \{x\}_0,t_0)$. The refinement consists in the fact that only the values of $\mathbf \{v\}$, respectively $p$, in the exterior of a space-time paraboloid with vertex at $(\mathbf \{x\}_0,t_0)$, respectively in a ”small” subset of this exterior, are considered. The consequence is that a singularity cannot appear at the point $(\mathbf \{x\}_0,t_0)$ if $\mathbf \{v\}$ and $p$ are “smooth” outside the paraboloid.},
author = {Neustupa, Jiří},
journal = {Mathematica Bohemica},
keywords = {Navier-Stokes equation; suitable weak solution; regularity; Navier-Stokes equation; suitable weak solution; regularity},
language = {eng},
number = {4},
pages = {685-698},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations},
url = {http://eudml.org/doc/269831},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Neustupa, Jiří
TI - A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 4
SP - 685
EP - 698
AB - We deal with a suitable weak solution $(\mathbf {v},p)$ to the Navier-Stokes equations in a domain $\Omega \subset \mathbb {R}^3$. We refine the criterion for the local regularity of this solution at the point $(\mathbf {f}x_0,t_0)$, which uses the $L^3$-norm of $\mathbf {v}$ and the $L^{3/2}$-norm of $p$ in a shrinking backward parabolic neighbourhood of $(\mathbf {x}_0,t_0)$. The refinement consists in the fact that only the values of $\mathbf {v}$, respectively $p$, in the exterior of a space-time paraboloid with vertex at $(\mathbf {x}_0,t_0)$, respectively in a ”small” subset of this exterior, are considered. The consequence is that a singularity cannot appear at the point $(\mathbf {x}_0,t_0)$ if $\mathbf {v}$ and $p$ are “smooth” outside the paraboloid.
LA - eng
KW - Navier-Stokes equation; suitable weak solution; regularity; Navier-Stokes equation; suitable weak solution; regularity
UR - http://eudml.org/doc/269831
ER -
References
top- Caffarelli, L., Kohn, R., Nirenberg, L., 10.1002/cpa.3160350604, Commun. Pure Appl. Math. 35 (1982), 771-831. (1982) Zbl0509.35067MR0673830DOI10.1002/cpa.3160350604
- Farwig, R., Kozono, H., Sohr, H., Criteria of local in time regularity of the Navier-Stokes equations beyond Serrin's condition, Parabolic and Navier-Stokes Equations. Part 1. Proceedings of the confererence, Będlewo, Poland, 2006 Banach Center Publ. 81 Polish Academy of Sciences, Institute of Mathematics, Warsaw (2008), 175-184 J. Rencławowicz et al. (2008) Zbl1154.35416MR2549330
- Farwig, R., Kozono, H., Sohr, H., 10.1007/BF02588049, Acta Math. 195 (2005), 21-53. (2005) Zbl1111.35033MR2233684DOI10.1007/BF02588049
- Kučera, P., Skalák, Z., 10.1023/B:APOM.0000024492.23444.29, Appl. Math., Praha 48 (2003), 537-545. (2003) Zbl1099.35099MR2025962DOI10.1023/B:APOM.0000024492.23444.29
- Ladyzhenskaya, O. A., Seregin, G. A., 10.1007/s000210050015, J. Math. Fluid Mech. 1 (1999), 356-387. (1999) Zbl0954.35129MR1738171DOI10.1007/s000210050015
- Lin, F., 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A, Commun. Pure Appl. Math. 51 (1998), 241-257. (1998) Zbl0958.35102MR1488514DOI10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
- Nečas, J., Neustupa, J., 10.1007/s00021-002-8544-9, J. Math. Fluid Mech. 4 (2002), 237-256. (2002) Zbl1010.35081MR1932862DOI10.1007/s00021-002-8544-9
- Neustupa, J., 10.3934/dcdss.2013.6.1391, Discrete Contin. Dyn. Syst., Ser. S 6 (2013), 1391-1400. (2013) Zbl1260.35125MR3039705DOI10.3934/dcdss.2013.6.1391
- Neustupa, J., 10.1007/s00205-014-0761-x, Arch. Ration. Mech. Anal. 214 (2014), 525-544. (2014) Zbl1304.35502MR3255699DOI10.1007/s00205-014-0761-x
- Neustupa, J., 10.1088/0951-7715/25/6/1695, Nonlinearity 25 (2012), 1695-1708. (2012) Zbl1245.35085MR2924731DOI10.1088/0951-7715/25/6/1695
- Scheffer, V., 10.1007/BF01626512, Commun. Math. Phys. 55 (1977), 97-112. (1977) Zbl0357.35071MR0510154DOI10.1007/BF01626512
- Seregin, G., Šverák, V., 10.1007/s10958-005-0383-9, J. Math. Sci., New York 130 (2005), 4884-4892 translated from Zap. Nauchn. Semin. POMI 306 (2003), 186-198. (2003) MR2065503DOI10.1007/s10958-005-0383-9
- Seregin, G. A., 10.1070/RM2007v062n03ABEH004415, Russ. Math. Surv. 62 (2007), 595-614 translated from Usp. Mat. Nauk 62 149-168 (2007). (2007) Zbl1139.76018MR2355422DOI10.1070/RM2007v062n03ABEH004415
- Sohr, H., Wahl, W. von, 10.1007/BF01210782, Arch. Math. 46 (1986), 428-439. (1986) MR0847086DOI10.1007/BF01210782
- Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. (1976) Zbl0353.46018MR0463908
- Wolf, J., A new criterion for partial regularity of suitable weak solutions to the Navier-Stokes equations, Advances in Mathematical Fluid Mechanics. Selected papers of the international conference on mathematical fluid mechanics, Estoril, Portugal, 2007 Springer Berlin 613-630 (2010), R. Rannacher et al. (2010) MR2665054
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.