Displaying similar documents to “A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations”

A direct proof of the Caffarelli-Kohn-Nirenberg theorem

Jörg Wolf (2008)

Banach Center Publications

Similarity:

In the present paper we give a new proof of the Caffarelli-Kohn-Nirenberg theorem based on a direct approach. Given a pair (u,p) of suitable weak solutions to the Navier-Stokes equations in ℝ³ × ]0,∞[ the velocity field u satisfies the following property of partial regularity: The velocity u is Lipschitz continuous in a neighbourhood of a point (x₀,t₀) ∈ Ω × ]0,∞ [ if l i m s u p R 0 1 / R Q R ( x , t ) | c u r l u × u / | u | | ² d x d t ε * for a sufficiently small ε * > 0 .

A remark on the existence of steady Navier-Stokes flows in 2D semi-infinite channel involving the general outflow condition

H. Morimoto, H. Fujita (2001)

Mathematica Bohemica

Similarity:

We consider the steady Navier-Stokes equations in a 2-dimensional unbounded multiply connected domain Ω under the general outflow condition. Let T be a 2-dimensional straight channel × ( - 1 , 1 ) . We suppose that Ω { x 1 < 0 } is bounded and that Ω { x 1 > - 1 } = T { x 1 > - 1 } . Let V be a Poiseuille flow in T and μ the flux of V . We look for a solution which tends to V as x 1 . Assuming that the domain and the boundary data are symmetric with respect to the x 1 -axis, and that the axis intersects every component of the boundary, we have shown...

Criteria of local in time regularity of the Navier-Stokes equations beyond Serrin's condition

Reinhard Farwig, Hideo Kozono, Hermann Sohr (2008)

Banach Center Publications

Similarity:

Let u be a weak solution of the Navier-Stokes equations in a smooth bounded domain Ω ⊆ ℝ³ and a time interval [0,T), 0 < T ≤ ∞, with initial value u₀, external force f = div F, and viscosity ν > 0. As is well known, global regularity of u for general u₀ and f is an unsolved problem unless we pose additional assumptions on u₀ or on the solution u itself such as Serrin’s condition | | u | | L s ( 0 , T ; L q ( Ω ) ) < where 2/s + 3/q = 1. In the present paper we prove several local and global regularity properties...

On the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations in smooth domains. The regularity problem

Hugo Beirão da Veiga (2009)

Journal of the European Mathematical Society

Similarity:

We establish regularity results up to the boundary for solutions to generalized Stokes and Navier–Stokes systems of equations in the stationary and evolutive cases. Generalized here means the presence of a shear dependent viscosity. We treat the case p 2 . Actually, we are interested in proving regularity results in L q ( Ω ) spaces for all the second order derivatives of the velocity and all the first order derivatives of the pressure. The main aim of the present paper is to extend our previous...

The boundary regularity of a weak solution of the Navier-Stokes equation and its connection to the interior regularity of pressure

Jiří Neustupa (2003)

Applications of Mathematics

Similarity:

We assume that 𝕧 is a weak solution to the non-steady Navier-Stokes initial-boundary value problem that satisfies the strong energy inequality in its domain and the Prodi-Serrin integrability condition in the neighborhood of the boundary. We show the consequences for the regularity of 𝕧 near the boundary and the connection with the interior regularity of an associated pressure and the time derivative of 𝕧 .

Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in n

Reinhard Farwig, Hermann Sohr (2009)

Czechoslovak Mathematical Journal

Similarity:

For a bounded domain Ω n , n 3 , we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system - Δ u + u · u + p = f , div u = k , u | Ω = g with u L q , q n , and very general data classes for f , k , g such that u may have no differentiability property. For smooth data we get a large class of unique and regular solutions extending well known classical solution classes, and generalizing regularity results. Moreover, our results are closely related to those of...

Global existence of axially symmetric solutions to Navier-Stokes equations with large angular component of velocity

Wojciech M. Zajączkowski (2004)

Colloquium Mathematicae

Similarity:

Global existence of axially symmetric solutions to the Navier-Stokes equations in a cylinder with the axis of symmetry removed is proved. The solutions satisfy the ideal slip conditions on the boundary. We underline that there is no restriction on the angular component of velocity. We obtain two kinds of existence results. First, under assumptions necessary for the existence of weak solutions, we prove that the velocity belongs to W 4 / 3 2 , 1 ( Ω × ( 0 , T ) ) , so it satisfies the Serrin condition. Next, increasing...

Long time existence of regular solutions to Navier-Stokes equations in cylindrical domains under boundary slip conditions

W. M. Zajączkowski (2005)

Studia Mathematica

Similarity:

Long time existence of solutions to the Navier-Stokes equations in cylindrical domains under boundary slip conditions is proved. Moreover, the existence of solutions with no restrictions on the magnitude of the initial velocity and the external force is shown. However, we have to assume that the quantity I = i = 1 2 ( | | x i v ( 0 ) | | L ( Ω ) + | | x i f | | L ( Ω × ( 0 , T ) ) ) is sufficiently small, where x₃ is the coordinate along the axis parallel to the cylinder. The time of existence is inversely proportional to I. Existence of solutions is proved by...

Global regular solutions to the Navier-Stokes equations in a cylinder

Wojciech M. Zajączkowski (2006)

Banach Center Publications

Similarity:

The existence and uniqueness of solutions to the Navier-Stokes equations in a cylinder Ω and with boundary slip conditions is proved. Assuming that the azimuthal derivative of cylindrical coordinates and azimuthal coordinate of the initial velocity and the external force are sufficiently small we prove long time existence of regular solutions such that the velocity belongs to W 5 / 2 2 , 1 ( Ω × ( 0 , T ) ) and the gradient of the pressure to L 5 / 2 ( Ω × ( 0 , T ) ) . We prove the existence of solutions without any restrictions on the...

On an existence theorem for the Navier-Stokes equations with free slip boundary condition in exterior domain

Rieko Shimada, Norikazu Yamaguchi (2008)

Banach Center Publications

Similarity:

This paper deals with a nonstationary problem for the Navier-Stokes equations with a free slip boundary condition in an exterior domain. We obtain a global in time unique solvability theorem and temporal asymptotic behavior of the global strong solution when the initial velocity is sufficiently small in the sense of Lⁿ (n is dimension). The proof is based on the contraction mapping principle with the aid of L p - L q estimates for the Stokes semigroup associated with a linearized problem, which...

Regularity criterion for 3D Navier-Stokes equations in terms of the direction of the velocity

Alexis Vasseur (2009)

Applications of Mathematics

Similarity:

In this short note we give a link between the regularity of the solution u to the 3D Navier-Stokes equation and the behavior of the direction of the velocity u / | u | . It is shown that the control of Div ( u / | u | ) in a suitable L t p ( L x q ) norm is enough to ensure global regularity. The result is reminiscent of the criterion in terms of the direction of the vorticity, introduced first by Constantin and Fefferman. However, in this case the condition is not on the vorticity but on the velocity itself. The proof, based...

On the existence for the Dirichlet problem for the compressible linearized Navier-Stokes system in the L p -framework

Piotr Boguslaw Mucha, Wojciech Zajączkowski (2002)

Annales Polonici Mathematici

Similarity:

The existence of solutions to the Dirichlet problem for the compressible linearized Navier-Stokes system is proved in a class such that the velocity vector belongs to W r 2 , 1 with r > 3. The proof is done in two steps. First the existence for local problems with constant coefficients is proved by applying the Fourier transform. Next by applying the regularizer technique the existence in a bounded domain is shown.