Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity
Mathematica Bohemica (2014)
- Volume: 139, Issue: 4, page 639-647
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topFujie, Kentarou, and Yokota, Tomomi. "Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity." Mathematica Bohemica 139.4 (2014): 639-647. <http://eudml.org/doc/269838>.
@article{Fujie2014,
abstract = {This paper deals with parabolic-elliptic chemotaxis systems with the sensitivity function $\chi (v)$ and the growth term $f(u)$ under homogeneous Neumann boundary conditions in a smooth bounded domain. Here it is assumed that $0< \chi (v)\le \{\{\chi \}_0\}/\{v^k\}$$(k\ge 1$, $\{\chi \}_0>0)$ and $\lambda _1-\mu _1 u \le f(u)\le \lambda _2-\mu _2 u$$(\lambda _1,\lambda _2,\mu _1,\mu _2>0)$. It is shown that if $\chi _0$ is sufficiently small, then the system has a unique global-in-time classical solution that is uniformly bounded. This boundedness result is a generalization of a recent result by K. Fujie, M. Winkler, T. Yokota.},
author = {Fujie, Kentarou, Yokota, Tomomi},
journal = {Mathematica Bohemica},
keywords = {chemotaxis; global existence; boundedness; chemotaxis; global existence; boundedness},
language = {eng},
number = {4},
pages = {639-647},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity},
url = {http://eudml.org/doc/269838},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Fujie, Kentarou
AU - Yokota, Tomomi
TI - Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 4
SP - 639
EP - 647
AB - This paper deals with parabolic-elliptic chemotaxis systems with the sensitivity function $\chi (v)$ and the growth term $f(u)$ under homogeneous Neumann boundary conditions in a smooth bounded domain. Here it is assumed that $0< \chi (v)\le {{\chi }_0}/{v^k}$$(k\ge 1$, ${\chi }_0>0)$ and $\lambda _1-\mu _1 u \le f(u)\le \lambda _2-\mu _2 u$$(\lambda _1,\lambda _2,\mu _1,\mu _2>0)$. It is shown that if $\chi _0$ is sufficiently small, then the system has a unique global-in-time classical solution that is uniformly bounded. This boundedness result is a generalization of a recent result by K. Fujie, M. Winkler, T. Yokota.
LA - eng
KW - chemotaxis; global existence; boundedness; chemotaxis; global existence; boundedness
UR - http://eudml.org/doc/269838
ER -
References
top- Biler, P., Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl. 9 (1999), 347-359. (1999) Zbl0941.35009MR1690388
- Biler, P., Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl. 8 (1998), 715-743. (1998) Zbl0913.35021MR1657160
- Fujie, K., Winkler, M., Yokota, T., 10.1002/mma.3149, (to appear) in Math. Methods Appl. Sci. DOI:10.1002/mma.3149. DOI10.1002/mma.3149
- Hillen, T., Painter, K. J., 10.1007/s00285-008-0201-3, J. Math. Biol. 58 (2009), 183-217. (2009) Zbl1161.92003MR2448428DOI10.1007/s00285-008-0201-3
- Horstmann, D., Winkler, M., 10.1016/j.jde.2004.10.022, J. Differ. Equations 215 (2005), 52-107. (2005) Zbl1085.35065MR2146345DOI10.1016/j.jde.2004.10.022
- Keller, E. F., Segel, L. A., 10.1016/0022-5193(71)90051-8, J. Theor. Biol. 30 (1971), 235-248. (1971) Zbl1170.92308DOI10.1016/0022-5193(71)90051-8
- Keller, E. F., Segel, L. A., 10.1016/0022-5193(70)90092-5, J. Theor. Biol. 26 (1970), 399-415. (1970) Zbl1170.92306DOI10.1016/0022-5193(70)90092-5
- Manásevich, R., Phan, Q. H., Souplet, P., 10.1017/S095679251200040X, Eur. J. Appl. Math. 24 (2013), 273-296. (2013) Zbl1284.35445MR3031780DOI10.1017/S095679251200040X
- Mu, C., Wang, L., Zheng, P., Zhang, Q., Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system, Nonlinear Anal., Real World Appl. 14 (2013), 1634-1642. (2013) Zbl1261.35072MR3004526
- Nagai, T., Senba, T., Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl. 8 (1998), 145-156. (1998) Zbl0902.35010MR1623326
- Negreanu, M., Tello, J. I., 10.1016/j.na.2012.12.004, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 80 (2013), 1-13. (2013) Zbl1260.35238MR3010749DOI10.1016/j.na.2012.12.004
- Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M., 10.1016/S0362-546X(01)00815-X, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 51 (2002), 119-144. (2002) Zbl1005.35023MR1915744DOI10.1016/S0362-546X(01)00815-X
- Osaki, K., Yagi, A., Global existence for a chemotaxis-growth system in , Adv. Math. Sci. Appl. 12 (2002), 587-606. (2002) MR1943982
- Othmer, H. G., Stevens, A., 10.1137/S0036139995288976, SIAM J. Appl. Math. 57 (1997), 1044-1081. (1997) Zbl0990.35128MR1462051DOI10.1137/S0036139995288976
- Sleeman, B. D., Levine, H. A., 10.1002/mma.212, Applied mathematical analysis in the last century Math. Methods Appl. Sci. 24 (2001), 405-426. (2001) Zbl0990.35014MR1821934DOI10.1002/mma.212
- Stinner, C., Winkler, M., Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal., Real World Appl. 12 (2011), 3727-3740. (2011) Zbl1268.35072MR2833007
- Winkler, M., 10.1002/mma.1346, Math. Methods Appl. Sci. 34 (2011), 176-190. (2011) Zbl1291.92018MR2778870DOI10.1002/mma.1346
- Winkler, M., 10.1002/mana.200810838, Math. Nachr. 283 (2010), 1664-1673. (2010) Zbl1205.35037MR2759803DOI10.1002/mana.200810838
- Winkler, M., 10.1080/03605300903473426, Commun. Partial Differ. Equations 35 (2010), 1516-1537. (2010) Zbl1290.35139MR2754053DOI10.1080/03605300903473426
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.