Displaying similar documents to “Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity”

Global Attractors for a Class of Semilinear Degenerate Parabolic Equations on N

Cung The Anh, Le Thi Thuy (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We prove the existence of global attractors for the following semilinear degenerate parabolic equation on N : ∂u/∂t - div(σ(x)∇ u) + λu + f(x,u) = g(x), under a new condition concerning the variable nonnegative diffusivity σ(·) and for an arbitrary polynomial growth order of the nonlinearity f. To overcome some difficulties caused by the lack of compactness of the embeddings, these results are proved by combining the tail estimates method and the asymptotic a priori estimate method. ...

Single-point blow-up for a semilinear parabolic system

Ph. Souplet (2009)

Journal of the European Mathematical Society

Similarity:

We consider positive solutions of the system u t - Δ u = v p ; v t - Δ v = u q in a ball or in the whole space, with p , q > 1 . Relatively little is known on the blow-up set for semilinear parabolic systems and, up to now, no result was available for this basic system except for the very special case p = q . Here we prove single-point blow-up for a large class of radial decreasing solutions. This in particular solves a problem left open in a paper of A. Friedman and Y. Giga (1987). We also obtain lower pointwise estimates for...

Absence of global solutions to a class of nonlinear parabolic inequalities

M. Guedda (2002)

Colloquium Mathematicae

Similarity:

We study the absence of nonnegative global solutions to parabolic inequalities of the type u t - ( - Δ ) β / 2 u - V ( x ) u + h ( x , t ) u p , where ( - Δ ) β / 2 , 0 < β ≤ 2, is the β/2 fractional power of the Laplacian. We give a sufficient condition which implies that the only global solution is trivial if p > 1 is small. Among other properties, we derive a necessary condition for the existence of local and global nonnegative solutions to the above problem for the function V satisfying V ( x ) a | x | - b , where a ≥ 0, b > 0, p > 1 and V₊(x): = maxV(x),0....

Cauchy problem for the complex Ginzburg-Landau type Equation with L p -initial data

Daisuke Shimotsuma, Tomomi Yokota, Kentarou Yoshii (2014)

Mathematica Bohemica

Similarity:

This paper gives the local existence of mild solutions to the Cauchy problem for the complex Ginzburg-Landau type equation u t - ( λ + i α ) Δ u + ( κ + i β ) | u | q - 1 u - γ u = 0 in N × ( 0 , ) with L p -initial data u 0 in the subcritical case ( 1 q < 1 + 2 p / N ), where u is a complex-valued unknown function, α , β , γ , κ , λ > 0 , p > 1 , i = - 1 and N . The proof is based on the L p - L q estimates of the linear semigroup { exp ( t ( λ + i α ) Δ ) } and usual fixed-point argument.

On the long-time behaviour of solutions of the p-Laplacian parabolic system

Paweł Goldstein (2008)

Colloquium Mathematicae

Similarity:

Convergence of global solutions to stationary solutions for a class of degenerate parabolic systems related to the p-Laplacian operator is proved. A similar result is obtained for a variable exponent p. In the case of p constant, the convergence is proved to be ¹ l o c , and in the variable exponent case, L² and W 1 , p ( x ) -weak.

Asymptotically self-similar solutions for the parabolic system modelling chemotaxis

Yūki Naito (2006)

Banach Center Publications

Similarity:

We consider a nonlinear parabolic system modelling chemotaxis u t = · ( u - u v ) , v t = Δ v + u in ℝ², t > 0. We first prove the existence of time-global solutions, including self-similar solutions, for small initial data, and then show the asymptotically self-similar behavior for a class of general solutions.

A weighted symmetrization for nonlinear elliptic and parabolic equations in inhomogeneous media

Guillermo Reyes, Juan Luis Vázquez (2006)

Journal of the European Mathematical Society

Similarity:

In the theory of elliptic equations, the technique of Schwarz symmetrization is one of the tools used to obtain a priori bounds for classical and weak solutions in terms of general information on the data. A basic result says that, in the absence of lower-order terms, the symmetric rearrangement of the solution u of an elliptic equation, that we write u * , can be compared pointwise with the solution of the symmetrized problem. The main question we address here is the modification of the...

L estimates of solution for m -Laplacian parabolic equation with a nonlocal term

Pulun Hou, Caisheng Chen (2011)

Czechoslovak Mathematical Journal

Similarity:

In this paper, we consider the global existence, uniqueness and L estimates of weak solutions to quasilinear parabolic equation of m -Laplacian type u t - div ( | u | m - 2 u ) = u | u | β - 1 Ω | u | α d x in Ω × ( 0 , ) with zero Dirichlet boundary condition in Ω . Further, we obtain the L estimate of the solution u ( t ) and u ( t ) for t > 0 with the initial data u 0 L q ( Ω ) ( q > 1 ) , and the case α + β < m - 1 .

Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities

Philippe Souplet, Slim Tayachi (2001)

Colloquium Mathematicae

Similarity:

Consider the nonlinear heat equation (E): u t - Δ u = | u | p - 1 u + b | u | q . We prove that for a large class of radial, positive, nonglobal solutions of (E), one has the blowup estimates C ( T - t ) - 1 / ( p - 1 ) | | u ( t ) | | C ( T - t ) - 1 / ( p - 1 ) . Also, as an application of our method, we obtain the same upper estimate if u only satisfies the nonlinear parabolic inequality u t - u x x u p . More general inequalities of the form u t - u x x f ( u ) with, for instance, f ( u ) = ( 1 + u ) l o g p ( 1 + u ) are also treated. Our results show that for solutions of the parabolic inequality, one has essentially the same estimates as for solutions...

Homogenization of a linear parabolic problem with a certain type of matching between the microscopic scales

Pernilla Johnsen, Tatiana Lobkova (2018)

Applications of Mathematics

Similarity:

This paper is devoted to the study of the linear parabolic problem ε t u ε ( x , t ) - · ( a ( x / ε , t / ε 3 ) u ε ( x , t ) ) = f ( x , t ) by means of periodic homogenization. Two interesting phenomena arise as a result of the appearance of the coefficient ε in front of the time derivative. First, we have an elliptic homogenized problem although the problem studied is parabolic. Secondly, we get a parabolic local problem even though the problem has a different relation between the spatial and temporal scales than those normally giving rise to parabolic...

Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales

Tatiana Danielsson, Pernilla Johnsen (2021)

Mathematica Bohemica

Similarity:

In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in L 2 ( 0 , T ; H 0 1 ( Ω ) ) , fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation ε p t u ε ( x , t ) - · ( a ( x ε - 1 , x ε - 2 , t ε - q , t ε - r ) u ε ( x , t ) ) = f ( x , t ) , where 0 < p < q < r . The homogenization result reveals two special phenomena, namely that the homogenized problem is elliptic and that the matching for which the local problem is parabolic is shifted by p , compared to the standard matching that gives rise...