solutions of rate independent differential inclusions
Pavel Krejčí; Vincenzo Recupero
Mathematica Bohemica (2014)
- Volume: 139, Issue: 4, page 607-619
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKrejčí, Pavel, and Recupero, Vincenzo. "$\rm BV$ solutions of rate independent differential inclusions." Mathematica Bohemica 139.4 (2014): 607-619. <http://eudml.org/doc/269846>.
@article{Krejčí2014,
abstract = {We consider a class of evolution differential inclusions defining the so-called stop operator arising in elastoplasticity, ferromagnetism, and phase transitions. These differential inclusions depend on a constraint which is represented by a convex set that is called the characteristic set. For $\rm BV$ (bounded variation) data we compare different notions of $\rm BV$ solutions and study how the continuity properties of the solution operators are related to the characteristic set. In the finite-dimensional case we also give a geometric characterization of the cases when these kinds of solutions coincide for left continuous inputs.},
author = {Krejčí, Pavel, Recupero, Vincenzo},
journal = {Mathematica Bohemica},
keywords = {differential inclusion; stop operator; rate independence; convex set; differential inclusion; stop operator; rate independence; convex set},
language = {eng},
number = {4},
pages = {607-619},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$\rm BV$ solutions of rate independent differential inclusions},
url = {http://eudml.org/doc/269846},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Krejčí, Pavel
AU - Recupero, Vincenzo
TI - $\rm BV$ solutions of rate independent differential inclusions
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 4
SP - 607
EP - 619
AB - We consider a class of evolution differential inclusions defining the so-called stop operator arising in elastoplasticity, ferromagnetism, and phase transitions. These differential inclusions depend on a constraint which is represented by a convex set that is called the characteristic set. For $\rm BV$ (bounded variation) data we compare different notions of $\rm BV$ solutions and study how the continuity properties of the solution operators are related to the characteristic set. In the finite-dimensional case we also give a geometric characterization of the cases when these kinds of solutions coincide for left continuous inputs.
LA - eng
KW - differential inclusion; stop operator; rate independence; convex set; differential inclusion; stop operator; rate independence; convex set
UR - http://eudml.org/doc/269846
ER -
References
top- Aumann, G., Reelle Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete 68 Springer, Berlin (1954), German. (1954) Zbl0056.05202MR0061652
- Bourbaki, N., Elements of Mathematics. Functions of a Real Variable. Elementary Theory, Springer Berlin (2004), translated from the 1976 French original. (2004) Zbl1085.26001MR2013000
- Brézis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies 5 North-Holland, Amsterdam, Elsevier, New York French (1973). (1973) MR0348562
- Brokate, M., Sprekels, J., 10.1007/978-1-4612-4048-8_5, Applied Mathematical Sciences 121 Springer, New York (1996). (1996) Zbl0951.74002MR1411908DOI10.1007/978-1-4612-4048-8_5
- Fraňková, D., Regulated functions, Math. Bohem. 116 (1991), 20-59. (1991) MR1100424
- Klein, O., Representation of hysteresis operators acting on vector-valued monotaffine functions, Adv. Math. Sci. Appl. 22 (2012), 471-500. (2012) MR3100006
- Krasnosel'skiĭ, M. A., Pokrovskiĭ, A. V., Systems with Hysteresis, Springer Berlin (1989), translated from the Russian, Nauka, Moskva, 1983. (1989) MR0742931
- Krejčí, P., Evolution variational inequalities and multidimensional hysteresis operators, Nonlinear Differential Equations. Proceedings of the seminar in Differential Equations, Chvalatice, Czech Republic, 1998 Chapman & Hall/CRC Res. Notes Math. 404 Boca Raton (1999), 47-110 P. Drábek et al. (1999) Zbl0949.47053MR1695378
- Krejčí, P., Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gakuto International Series. Mathematical Sciences and Applications 8 Gakkōtosho, Tokyo (1996). (1996) MR2466538
- Krejčí, P., Laurençot, P., Generalized variational inequalities, J. Convex Anal. 9 (2002), 159-183. (2002) Zbl1001.49014MR1917394
- Krejčí, P., Laurençot, P., Hysteresis filtering in the space of bounded measurable functions, Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 5 (2002), 755-772. (2002) Zbl1177.35125MR1934379
- Krejčí, P., Liero, M., 10.1007/s10492-009-0009-5, Appl. Math., Praha 54 (2009), 117-145. (2009) Zbl1212.49007MR2491851DOI10.1007/s10492-009-0009-5
- Krejčí, P., Recupero, V., Comparing solutions of rate independent processes, J. Convex Anal. 21 (2014), 121-146. (2014) MR3235307
- Krejčí, P., Roche, T., 10.3934/dcdsb.2011.15.637, Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 637-650. (2011) MR2774131DOI10.3934/dcdsb.2011.15.637
- Kurzweil, J., Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. 7 (1957), 418-449. (1957) Zbl0090.30002MR0111875
- Logemann, H., Mawby, A. D., 10.1016/S0022-247X(03)00097-0, J. Math. Anal. Appl. 282 (2003), 107-127. (2003) Zbl1042.47049MR2000333DOI10.1016/S0022-247X(03)00097-0
- Marques, M. D. P. Monteiro, Differential Inclusions in Nonsmooth Mechanical Problems---Shocks and Dry Friction, Progress in Nonlinear Differential Equations and their Applications 9 Birkhäuser, Basel (1993). (1993) MR1231975
- Moreau, J. J., 10.1016/0022-0396(77)90085-7, J. Differ. Equations 26 (1977), 347-374. (1977) MR0508661DOI10.1016/0022-0396(77)90085-7
- Moreau, J. J., Solutions du processus de rafle au sens des mesures différentielles, Travaux Sém. Anal. Convexe 6 French (1976), Exposé No. 1, 17 pages. (1976) Zbl0369.49007MR0637888
- Moreau, J. J., Rafle par un convexe variable II, Travaux du Séminaire d'Analyse Convexe II U. É. R. de Math., Univ. Sci. Tech. Languedoc Montpellier French (1972), Exposé No. 3, 36 pages. Zbl0343.49020MR0637728
- Recupero, V., 10.1016/j.jde.2011.06.018, J. Differ. Equations 251 (2011), 2125-2142. (2011) Zbl1237.34116MR2823662DOI10.1016/j.jde.2011.06.018
- Recupero, V., solutions of rate independent variational inequalities, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 10 (2011), 269-315. (2011) MR2856149
- Recupero, V., 10.1088/1742-6596/268/1/012024, J. Phys., Conf. Ser. 268 Article No. 0120124, 12 pages (2011). (2011) DOI10.1088/1742-6596/268/1/012024
- Recupero, V., 10.1002/mana.200610723, Math. Nachr. 282 (2009), 86-98. (2009) MR2473132DOI10.1002/mana.200610723
- Recupero, V., 10.1080/00036810903397446, Appl. Anal. 88 (2009), 1739-1753. (2009) Zbl1177.74308MR2588416DOI10.1080/00036810903397446
- Recupero, V., 10.1002/mma.1124, Math. Methods Appl. Sci. 32 (2009), 2003-2018. (2009) Zbl1214.47081MR2560936DOI10.1002/mma.1124
- Recupero, V., 10.1016/j.aml.2006.10.006, Appl. Math. Lett. 20 (2007), 1156-1160. (2007) Zbl1152.47059MR2358793DOI10.1016/j.aml.2006.10.006
- Siddiqi, A. H., Manchanda, P., Brokate, M., 10.1007/978-1-4613-0263-6_15, Trends in Industrial and Applied Mathematics 33, Amritsar, 2001 Appl. Optim. 72 Kluwer, Dordrecht (2002), 339-354 A. H. Siddiqi et al. (2002) MR1954114DOI10.1007/978-1-4613-0263-6_15
- Visintin, A., Differential Models of Hysteresis, Applied Mathematical Sciences 111 Springer, Berlin (1994), F. John et al. (1994) Zbl0820.35004MR1329094
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.