Hysteresis filtering in the space of bounded measurable functions
Pavel Krejčí; Philippe Laurençot
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 3, page 755-772
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topKrejčí, Pavel, and Laurençot, Philippe. "Hysteresis filtering in the space of bounded measurable functions." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 755-772. <http://eudml.org/doc/195526>.
@article{Krejčí2002,
abstract = {We define a mapping which with each function $u\in L^\{\infty\}(0, T)$ and an admissible value of $r > 0$ associates the function $\xi$ with a prescribed initial condition $\xi^\{0\}$ which minimizes the total variation in the $r$-neighborhood of $u$ in each subinterval $[0, t]$ of $[0, T]$. We show that this mapping is non-expansive with respect to $u$, $r$ and $\xi^\{0\}$, and coincides with the so-called play operator if $u$ is a regulated function.},
author = {Krejčí, Pavel, Laurençot, Philippe},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {755-772},
publisher = {Unione Matematica Italiana},
title = {Hysteresis filtering in the space of bounded measurable functions},
url = {http://eudml.org/doc/195526},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - Krejčí, Pavel
AU - Laurençot, Philippe
TI - Hysteresis filtering in the space of bounded measurable functions
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 755
EP - 772
AB - We define a mapping which with each function $u\in L^{\infty}(0, T)$ and an admissible value of $r > 0$ associates the function $\xi$ with a prescribed initial condition $\xi^{0}$ which minimizes the total variation in the $r$-neighborhood of $u$ in each subinterval $[0, t]$ of $[0, T]$. We show that this mapping is non-expansive with respect to $u$, $r$ and $\xi^{0}$, and coincides with the so-called play operator if $u$ is a regulated function.
LA - eng
UR - http://eudml.org/doc/195526
ER -
References
top- AUMANN, G., Reelle Funktionen (German), Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954. Zbl0056.05202MR61652
- BROKATE, M.- SPREKELS, J., Hysteresis and phase transitions, Appl. Math. Sci., 121, Springer-Verlag, New York, 1996. Zbl0951.74002MR1411908
- BROKATE, M.- DREßLER, K.- KREJČÍ, P., Rainflow counting and energy dissipation for hysteresis models in elastoplasticity, Euro. J. Mech. A/Solids, 15 (1996), 705-735. Zbl0863.73022MR1412202
- FRAŇKOVÁ, D., Regulated functions, Math. Bohem., 119 (1991), 20-59. Zbl0724.26009MR1100424
- KOLMOGOROV, A. N.- FOMIN, S. V., Introductory real analysis, Prentice Hall, Inc., Englewood Cliffs, 1970. Zbl0213.07305MR267052
- KRASNOSEL'SKII, M. A.- POKROVSKII, A. V., Systems with hysteresis (Russian), Nauka, Moscow, 1983 (English edition Springer1989). MR987431
- KREJČÍ, P., Hysteresis, convexity and dissipation in hyperbolic equations, Gakuto Int. Ser. Math. Sci. Appl., Vol. 8, Gakkotosho, Tokyo, 1996. Zbl1187.35003MR2466538
- TRONEL, G.- VLADIMIROV, A. A., On BV-type hysteresis operators, Nonlinear Anal., 39 (2000), 79-98. Zbl0943.47054MR1719926
- VISINTIN, A., Differential models of hysteresis, Springer, Berlin-Heidelberg, 1994. Zbl0820.35004MR1329094
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.