On block triangular matrices with signed Drazin inverse
Changjiang Bu; Wenzhe Wang; Jiang Zhou; Lizhu Sun
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 4, page 883-892
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBu, Changjiang, et al. "On block triangular matrices with signed Drazin inverse." Czechoslovak Mathematical Journal 64.4 (2014): 883-892. <http://eudml.org/doc/269852>.
@article{Bu2014,
abstract = {The sign pattern of a real matrix $A$, denoted by $\mathop \{\rm sgn\} A$, is the $(+,-,0)$-matrix obtained from $A$ by replacing each entry by its sign. Let $\mathcal \{Q\}(A)$ denote the set of all real matrices $B$ such that $\mathop \{\rm sgn\} B=\mathop \{\rm sgn\} A$. For a square real matrix $A$, the Drazin inverse of $A$ is the unique real matrix $X$ such that $A^\{k+1\}X=A^k$, $XAX=X$ and $AX=XA$, where $k$ is the Drazin index of $A$. We say that $A$ has signed Drazin inverse if $\mathop \{\rm sgn\} \widetilde\{A\}^\{\rm d\}=\mathop \{\rm sgn\} A^\{\rm d\}$ for any $\widetilde\{A\}\in \mathcal \{Q\}(A)$, where $A^\{\rm d\}$ denotes the Drazin inverse of $A$. In this paper, we give necessary conditions for some block triangular matrices to have signed Drazin inverse.},
author = {Bu, Changjiang, Wang, Wenzhe, Zhou, Jiang, Sun, Lizhu},
journal = {Czechoslovak Mathematical Journal},
keywords = {sign pattern matrix; signed Drazin inverse; strong sign nonsingular matrix; sign pattern matrix; signed Drazin inverse; strong sign nonsingular matrix},
language = {eng},
number = {4},
pages = {883-892},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On block triangular matrices with signed Drazin inverse},
url = {http://eudml.org/doc/269852},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Bu, Changjiang
AU - Wang, Wenzhe
AU - Zhou, Jiang
AU - Sun, Lizhu
TI - On block triangular matrices with signed Drazin inverse
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 883
EP - 892
AB - The sign pattern of a real matrix $A$, denoted by $\mathop {\rm sgn} A$, is the $(+,-,0)$-matrix obtained from $A$ by replacing each entry by its sign. Let $\mathcal {Q}(A)$ denote the set of all real matrices $B$ such that $\mathop {\rm sgn} B=\mathop {\rm sgn} A$. For a square real matrix $A$, the Drazin inverse of $A$ is the unique real matrix $X$ such that $A^{k+1}X=A^k$, $XAX=X$ and $AX=XA$, where $k$ is the Drazin index of $A$. We say that $A$ has signed Drazin inverse if $\mathop {\rm sgn} \widetilde{A}^{\rm d}=\mathop {\rm sgn} A^{\rm d}$ for any $\widetilde{A}\in \mathcal {Q}(A)$, where $A^{\rm d}$ denotes the Drazin inverse of $A$. In this paper, we give necessary conditions for some block triangular matrices to have signed Drazin inverse.
LA - eng
KW - sign pattern matrix; signed Drazin inverse; strong sign nonsingular matrix; sign pattern matrix; signed Drazin inverse; strong sign nonsingular matrix
UR - http://eudml.org/doc/269852
ER -
References
top- Brualdi, R. A., Chavey, K. L., Shader, B. L., 10.1006/jctb.1994.1059, J. Comb. Theory, Ser. B 62 (1994), 133-150. (1994) Zbl0807.05053MR1290635DOI10.1006/jctb.1994.1059
- Brualdi, R. A., Ryser, H. J., Combinatorial Matrix Theory, Encyclopedia of Mathematics and Its Applications 39 Cambridge University Press, Cambridge (1991). (1991) Zbl0746.05002MR1130611
- Brualdi, R. A., Shader, B. L., Matrices of Sign-Solvable Linear Systems, Cambridge Tracts in Mathematics 116 Cambridge University Press, Cambridge (1995). (1995) Zbl0833.15002MR1358133
- S. L. Campbell, C. D. Meyer, Jr., Generalized Inverses of Linear Transformations, Surveys and Reference Works in Mathematics 4 Pitman Publishing, London (1979). (1979) Zbl0417.15002MR0533666
- Catral, M., Olesky, D. D., Driessche, P. van den, Graphical description of group inverses of certain bipartite matrices, Linear Algebra Appl. 432 (2010), 36-52. (2010) MR2566457
- Eschenbach, C. A., Li, Z., Potentially nilpotent sign pattern matrices, Linear Algebra Appl. 299 (1999), 81-99. (1999) Zbl0941.15012MR1723710
- Shader, B. L., 10.1137/S0895479894272372, SIAM J. Matrix Anal. Appl. 16 (1995), 1056-1073. (1995) Zbl0837.05032MR1351455DOI10.1137/S0895479894272372
- Shao, J.-Y., He, J.-L., Shan, H.-Y., 10.1137/S0895479802401485, SIAM J. Matrix Anal. Appl. 24 (2003), 990-1002. (2003) MR2003317DOI10.1137/S0895479802401485
- Shao, J.-Y., Hu, Z.-X., 10.1016/S0166-218X(00)00182-7, Discrete Appl. Math. 105 (2000), 159-172. (2000) Zbl0965.05050MR1780469DOI10.1016/S0166-218X(00)00182-7
- Shao, J.-Y., Shan, H.-Y., 10.1016/S0024-3795(00)00233-0, Linear Algebra Appl. 322 (2001), 105-127. (2001) Zbl0967.15002MR1804116DOI10.1016/S0024-3795(00)00233-0
- Thomassen, C., 10.1016/0024-3795(89)90066-9, Linear Algebra Appl. 119 (1989), 27-34. (1989) Zbl0673.05067MR1005232DOI10.1016/0024-3795(89)90066-9
- Zhou, J., Bu, C., Wei, Y., 10.1080/03081087.2011.625498, Linear and Multilinear Algebra 60 (2012), 669-681. (2012) Zbl1246.15009MR2929177DOI10.1080/03081087.2011.625498
- Zhou, J., Bu, C., Wei, Y., Some block matrices with signed Drazin inverses, Linear Algebra Appl. 437 (2012), 1779-1792. (2012) Zbl1259.15008MR2946359
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.