Pretty cleanness and filter-regular sequences
Somayeh Bandari; Kamran Divaani-Aazar; Ali Soleyman Jahan
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 4, page 933-944
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBandari, Somayeh, Divaani-Aazar, Kamran, and Jahan, Ali Soleyman. "Pretty cleanness and filter-regular sequences." Czechoslovak Mathematical Journal 64.4 (2014): 933-944. <http://eudml.org/doc/269853>.
@article{Bandari2014,
abstract = {Let $K$ be a field and $S=K[x_1,\ldots , x_n]$. Let $I$ be a monomial ideal of $S$ and $u_1,\ldots , u_r$ be monomials in $S$. We prove that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then $S/I$ is pretty clean if and only if $S/(I,u_1,\ldots , u_r)$ is pretty clean. Also, we show that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then Stanley’s conjecture is true for $S/I$ if and only if it is true for $S/(I,u_1, \ldots , u_r)$. Finally, we prove that if $u_1,\ldots , u_r$ is a minimal set of generators for $I$ which form either a $d$-sequence, proper sequence or strong $s$-sequence (with respect to the reverse lexicographic order), then $S/I$ is pretty clean.},
author = {Bandari, Somayeh, Divaani-Aazar, Kamran, Jahan, Ali Soleyman},
journal = {Czechoslovak Mathematical Journal},
keywords = {almost clean module; clean module; $d$-sequence; filter-regular sequence; pretty clean module; almost clean module; clean module; -sequence; filter-regular sequence; pretty clean module},
language = {eng},
number = {4},
pages = {933-944},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Pretty cleanness and filter-regular sequences},
url = {http://eudml.org/doc/269853},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Bandari, Somayeh
AU - Divaani-Aazar, Kamran
AU - Jahan, Ali Soleyman
TI - Pretty cleanness and filter-regular sequences
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 933
EP - 944
AB - Let $K$ be a field and $S=K[x_1,\ldots , x_n]$. Let $I$ be a monomial ideal of $S$ and $u_1,\ldots , u_r$ be monomials in $S$. We prove that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then $S/I$ is pretty clean if and only if $S/(I,u_1,\ldots , u_r)$ is pretty clean. Also, we show that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then Stanley’s conjecture is true for $S/I$ if and only if it is true for $S/(I,u_1, \ldots , u_r)$. Finally, we prove that if $u_1,\ldots , u_r$ is a minimal set of generators for $I$ which form either a $d$-sequence, proper sequence or strong $s$-sequence (with respect to the reverse lexicographic order), then $S/I$ is pretty clean.
LA - eng
KW - almost clean module; clean module; $d$-sequence; filter-regular sequence; pretty clean module; almost clean module; clean module; -sequence; filter-regular sequence; pretty clean module
UR - http://eudml.org/doc/269853
ER -
References
top- Apel, J., 10.1023/A:1021912724441, J. Algebr. Comb. 17 (2003), 39-56. (2003) Zbl1031.13003MR1958008DOI10.1023/A:1021912724441
- Apel, J., 10.1023/A:1021916908512, J. Algebr. Comb. 17 (2003), 57-74. (2003) Zbl1031.13004MR1958009DOI10.1023/A:1021916908512
- Lorestani, K. Borna, Sahandi, P., Sharif, T., 10.1080/00927870600794115, Commun. Algebra 34 (2006), 3409-3412. (2006) MR2252680DOI10.1080/00927870600794115
- Dress, A., A new algebraic criterion for shellability, Beitr. Algebra Geom. 34 (1993), 45-55. (1993) Zbl0780.52012MR1239277
- Herzog, J., Jahan, A. S., Yassemi, S., 10.1007/s10801-007-0076-1, J. Algebr. Comb. 27 (2008), 113-125. (2008) Zbl1131.13020MR2366164DOI10.1007/s10801-007-0076-1
- Herzog, J., Hibi, T., Monomial Ideals, Graduate Texts in Mathematics 260 Springer, London (2011). (2011) Zbl1206.13001MR2724673
- Herzog, J., Popescu, D., 10.1007/s00229-006-0044-4, Manuscr. Math. 121 (2006), 385-410. (2006) Zbl1107.13017MR2267659DOI10.1007/s00229-006-0044-4
- Herzog, J., Restuccia, G., Tang, Z., 10.1007/s002290170022, Manuscr. Math. 104 (2001), 479-501. (2001) Zbl1058.13011MR1836109DOI10.1007/s002290170022
- Herzog, J., Vladoiu, M., Zheng, X., 10.1016/j.jalgebra.2008.01.006, J. Algebra 322 (2009), 3151-3169. (2009) Zbl1186.13019MR2567414DOI10.1016/j.jalgebra.2008.01.006
- Popescu, D., 10.1016/j.jalgebra.2009.03.009, J. Algebra 321 (2009), 2782-2797. (2009) Zbl1179.13016MR2512626DOI10.1016/j.jalgebra.2009.03.009
- Rauf, A., Stanley decompositions, pretty clean filtrations and reductions modulo regular elements, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 50 (2007), 347-354. (2007) Zbl1155.13311MR2370321
- Sabzrou, H., Tousi, M., Yassemi, S., 10.1007/s00229-008-0175-x, Manuscr. Math. 126 (2008), 255-272. (2008) Zbl1165.13003MR2403189DOI10.1007/s00229-008-0175-x
- Jahan, A. Soleyman, Easy proofs of some well known facts via cleanness, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 237-243. (2011) MR2856300
- Jahan, A. Soleyman, 10.1080/00927870903431225, Commun. Algebra 39 (2011), 116-124. (2011) MR2770881DOI10.1080/00927870903431225
- Jahan, A. Soleyman, 10.1007/s00229-009-0308-x, Manuscr. Math. 130 (2009), 533-550. (2009) MR2563149DOI10.1007/s00229-009-0308-x
- Jahan, A. Soleyman, 10.1016/j.jalgebra.2006.11.002, J. Algebra 312 (2007), 1011-1032. (2007) MR2333198DOI10.1016/j.jalgebra.2006.11.002
- Jahan, A. Soleyman, Zheng, X., 10.1080/00927872.2011.585679, Commun. Algebra 40 (2012), 2786-2797. (2012) Zbl1254.13025MR2968912DOI10.1080/00927872.2011.585679
- Stanley, R. P., 10.1007/BF01394054, Invent. Math. 68 (1982), 175-193. (1982) Zbl0516.10009MR0666158DOI10.1007/BF01394054
- Tang, Z., 10.1016/j.jalgebra.2004.08.027, J. Algebra 282 (2004), 831-842. (2004) Zbl1147.13304MR2101086DOI10.1016/j.jalgebra.2004.08.027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.