Pretty cleanness and filter-regular sequences

Somayeh Bandari; Kamran Divaani-Aazar; Ali Soleyman Jahan

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 4, page 933-944
  • ISSN: 0011-4642

Abstract

top
Let K be a field and S = K [ x 1 , ... , x n ] . Let I be a monomial ideal of S and u 1 , ... , u r be monomials in S . We prove that if u 1 , ... , u r form a filter-regular sequence on S / I , then S / I is pretty clean if and only if S / ( I , u 1 , ... , u r ) is pretty clean. Also, we show that if u 1 , ... , u r form a filter-regular sequence on S / I , then Stanley’s conjecture is true for S / I if and only if it is true for S / ( I , u 1 , ... , u r ) . Finally, we prove that if u 1 , ... , u r is a minimal set of generators for I which form either a d -sequence, proper sequence or strong s -sequence (with respect to the reverse lexicographic order), then S / I is pretty clean.

How to cite

top

Bandari, Somayeh, Divaani-Aazar, Kamran, and Jahan, Ali Soleyman. "Pretty cleanness and filter-regular sequences." Czechoslovak Mathematical Journal 64.4 (2014): 933-944. <http://eudml.org/doc/269853>.

@article{Bandari2014,
abstract = {Let $K$ be a field and $S=K[x_1,\ldots , x_n]$. Let $I$ be a monomial ideal of $S$ and $u_1,\ldots , u_r$ be monomials in $S$. We prove that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then $S/I$ is pretty clean if and only if $S/(I,u_1,\ldots , u_r)$ is pretty clean. Also, we show that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then Stanley’s conjecture is true for $S/I$ if and only if it is true for $S/(I,u_1, \ldots , u_r)$. Finally, we prove that if $u_1,\ldots , u_r$ is a minimal set of generators for $I$ which form either a $d$-sequence, proper sequence or strong $s$-sequence (with respect to the reverse lexicographic order), then $S/I$ is pretty clean.},
author = {Bandari, Somayeh, Divaani-Aazar, Kamran, Jahan, Ali Soleyman},
journal = {Czechoslovak Mathematical Journal},
keywords = {almost clean module; clean module; $d$-sequence; filter-regular sequence; pretty clean module; almost clean module; clean module; -sequence; filter-regular sequence; pretty clean module},
language = {eng},
number = {4},
pages = {933-944},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Pretty cleanness and filter-regular sequences},
url = {http://eudml.org/doc/269853},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Bandari, Somayeh
AU - Divaani-Aazar, Kamran
AU - Jahan, Ali Soleyman
TI - Pretty cleanness and filter-regular sequences
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 933
EP - 944
AB - Let $K$ be a field and $S=K[x_1,\ldots , x_n]$. Let $I$ be a monomial ideal of $S$ and $u_1,\ldots , u_r$ be monomials in $S$. We prove that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then $S/I$ is pretty clean if and only if $S/(I,u_1,\ldots , u_r)$ is pretty clean. Also, we show that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then Stanley’s conjecture is true for $S/I$ if and only if it is true for $S/(I,u_1, \ldots , u_r)$. Finally, we prove that if $u_1,\ldots , u_r$ is a minimal set of generators for $I$ which form either a $d$-sequence, proper sequence or strong $s$-sequence (with respect to the reverse lexicographic order), then $S/I$ is pretty clean.
LA - eng
KW - almost clean module; clean module; $d$-sequence; filter-regular sequence; pretty clean module; almost clean module; clean module; -sequence; filter-regular sequence; pretty clean module
UR - http://eudml.org/doc/269853
ER -

References

top
  1. Apel, J., 10.1023/A:1021912724441, J. Algebr. Comb. 17 (2003), 39-56. (2003) Zbl1031.13003MR1958008DOI10.1023/A:1021912724441
  2. Apel, J., 10.1023/A:1021916908512, J. Algebr. Comb. 17 (2003), 57-74. (2003) Zbl1031.13004MR1958009DOI10.1023/A:1021916908512
  3. Lorestani, K. Borna, Sahandi, P., Sharif, T., 10.1080/00927870600794115, Commun. Algebra 34 (2006), 3409-3412. (2006) MR2252680DOI10.1080/00927870600794115
  4. Dress, A., A new algebraic criterion for shellability, Beitr. Algebra Geom. 34 (1993), 45-55. (1993) Zbl0780.52012MR1239277
  5. Herzog, J., Jahan, A. S., Yassemi, S., 10.1007/s10801-007-0076-1, J. Algebr. Comb. 27 (2008), 113-125. (2008) Zbl1131.13020MR2366164DOI10.1007/s10801-007-0076-1
  6. Herzog, J., Hibi, T., Monomial Ideals, Graduate Texts in Mathematics 260 Springer, London (2011). (2011) Zbl1206.13001MR2724673
  7. Herzog, J., Popescu, D., 10.1007/s00229-006-0044-4, Manuscr. Math. 121 (2006), 385-410. (2006) Zbl1107.13017MR2267659DOI10.1007/s00229-006-0044-4
  8. Herzog, J., Restuccia, G., Tang, Z., 10.1007/s002290170022, Manuscr. Math. 104 (2001), 479-501. (2001) Zbl1058.13011MR1836109DOI10.1007/s002290170022
  9. Herzog, J., Vladoiu, M., Zheng, X., 10.1016/j.jalgebra.2008.01.006, J. Algebra 322 (2009), 3151-3169. (2009) Zbl1186.13019MR2567414DOI10.1016/j.jalgebra.2008.01.006
  10. Popescu, D., 10.1016/j.jalgebra.2009.03.009, J. Algebra 321 (2009), 2782-2797. (2009) Zbl1179.13016MR2512626DOI10.1016/j.jalgebra.2009.03.009
  11. Rauf, A., Stanley decompositions, pretty clean filtrations and reductions modulo regular elements, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 50 (2007), 347-354. (2007) Zbl1155.13311MR2370321
  12. Sabzrou, H., Tousi, M., Yassemi, S., 10.1007/s00229-008-0175-x, Manuscr. Math. 126 (2008), 255-272. (2008) Zbl1165.13003MR2403189DOI10.1007/s00229-008-0175-x
  13. Jahan, A. Soleyman, Easy proofs of some well known facts via cleanness, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 237-243. (2011) MR2856300
  14. Jahan, A. Soleyman, 10.1080/00927870903431225, Commun. Algebra 39 (2011), 116-124. (2011) MR2770881DOI10.1080/00927870903431225
  15. Jahan, A. Soleyman, 10.1007/s00229-009-0308-x, Manuscr. Math. 130 (2009), 533-550. (2009) MR2563149DOI10.1007/s00229-009-0308-x
  16. Jahan, A. Soleyman, 10.1016/j.jalgebra.2006.11.002, J. Algebra 312 (2007), 1011-1032. (2007) MR2333198DOI10.1016/j.jalgebra.2006.11.002
  17. Jahan, A. Soleyman, Zheng, X., 10.1080/00927872.2011.585679, Commun. Algebra 40 (2012), 2786-2797. (2012) Zbl1254.13025MR2968912DOI10.1080/00927872.2011.585679
  18. Stanley, R. P., 10.1007/BF01394054, Invent. Math. 68 (1982), 175-193. (1982) Zbl0516.10009MR0666158DOI10.1007/BF01394054
  19. Tang, Z., 10.1016/j.jalgebra.2004.08.027, J. Algebra 282 (2004), 831-842. (2004) Zbl1147.13304MR2101086DOI10.1016/j.jalgebra.2004.08.027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.