A combinatorial proof of a formula for Betti numbers of a stacked polytope.
Applying techniques similar to Combinatorial Nullstellensatz we prove a lower estimate of |f(A,B)| for finite subsets A, B of a field, and a polynomial f(x,y) of the form f(x,y) = g(x) + yh(x), where the degree of g is greater than that of h.
We provide a construction of monomial ideals in such that , where denotes the least number of generators. This construction generalizes the main result of S. Eliahou, J. Herzog, M. Mohammadi Saem (2018). Working in the ring , we generalize the definition of a Freiman ideal which was introduced in J. Herzog, G. Zhu (2019) and then we give a complete characterization of such ideals. A particular case of this characterization leads to some further investigations on that generalize some results...
For a simplicial complex we study the behavior of its - and -triangle under the action of barycentric subdivision. In particular we describe the - and -triangle of its barycentric subdivision . The same has been done for - and -vector of by F. Brenti, V. Welker (2008). As a consequence we show that if the entries of the -triangle of are nonnegative, then the entries of the -triangle of are also nonnegative. We conclude with a few properties of the -triangle of .
Order complex is an important object associated to a partially ordered set. Following a suggestion from V. A. Vassiliev (1994), we investigate an order complex associated to the partially ordered set of nontrivial ideals in a commutative ring with identity. We determine the homotopy type of the geometric realization for the order complex associated to a general commutative ring with identity. We show that this complex is contractible except for semilocal rings with trivial Jacobson radical when...
Let be a field and . Let be a monomial ideal of and be monomials in . We prove that if form a filter-regular sequence on , then is pretty clean if and only if is pretty clean. Also, we show that if form a filter-regular sequence on , then Stanley’s conjecture is true for if and only if it is true for . Finally, we prove that if is a minimal set of generators for which form either a -sequence, proper sequence or strong -sequence (with respect to the reverse lexicographic...
Let be a complete multipartite graph on with and being its binomial edge ideal. It is proved that the Castelnuovo-Mumford regularity is for any positive integer .
Let be a Noetherian local ring and a finitely generated -module. We say has maximal depth if there is an associated prime of such that depth . In this paper we study squarefree monomial ideals which have maximal depth. Edge ideals of cycle graphs, transversal polymatroidal ideals and high powers of connected bipartite graphs with this property are classified.
Let be a pure simplicial complex on the vertex set and its Stanley-Reisner ideal in the polynomial ring . We show that is a matroid (complete intersection) if and only if () is clean for all and this is equivalent to saying that (, respectively) is Cohen-Macaulay for all . By this result, we show that there exists a monomial ideal with (pretty) cleanness property while or is not (pretty) clean for all integer . If , we also prove that () is clean if and only if (,...
Let be a finite simple graph with the vertex set and let be its edge ideal in the polynomial ring . We compute the depth and the Castelnuovo-Mumford regularity of when or is a graph obtained from Cohen-Macaulay bipartite graphs , by the operation or operation, respectively.
Let be an ideal in a commutative Noetherian ring . Then the ideal has the strong persistence property if and only if for all , and has the symbolic strong persistence property if and only if for all , where denotes the th symbolic power of . We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the...