Equidistribution in the dual group of the -adic integers
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 4, page 911-931
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topUrban, Roman. "Equidistribution in the dual group of the $S$-adic integers." Czechoslovak Mathematical Journal 64.4 (2014): 911-931. <http://eudml.org/doc/269860>.
@article{Urban2014,
abstract = {Let $X$ be the quotient group of the $S$-adele ring of an algebraic number field by the discrete group of $S$-integers. Given a probability measure $\mu $ on $X^d$ and an endomorphism $T$ of $X^d$, we consider the relation between uniform distribution of the sequence $T^n\mathbf \{x\}$ for $\mu $-almost all $\mathbf \{x\}\in X^d$ and the behavior of $\mu $ relative to the translations by some rational subgroups of $X^d$. The main result of this note is an extension of the corresponding result for the $d$-dimensional torus $\mathbb \{T\}^d$ due to B. Host.},
author = {Urban, Roman},
journal = {Czechoslovak Mathematical Journal},
keywords = {uniform distribution modulo $1$; equidistribution in probability; algebraic number fields; $S$-adele ring; $S$-integer dynamical system; algebraic dynamics; topological dynamics; $a$-adic solenoid; uniform distribution modulo 1; equidistribution in probability; algebraic number fields; $S$-adele ring; $S$-integer dynamical system; algebraic dynamics; topological dynamics; -adic solenoid},
language = {eng},
number = {4},
pages = {911-931},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Equidistribution in the dual group of the $S$-adic integers},
url = {http://eudml.org/doc/269860},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Urban, Roman
TI - Equidistribution in the dual group of the $S$-adic integers
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 911
EP - 931
AB - Let $X$ be the quotient group of the $S$-adele ring of an algebraic number field by the discrete group of $S$-integers. Given a probability measure $\mu $ on $X^d$ and an endomorphism $T$ of $X^d$, we consider the relation between uniform distribution of the sequence $T^n\mathbf {x}$ for $\mu $-almost all $\mathbf {x}\in X^d$ and the behavior of $\mu $ relative to the translations by some rational subgroups of $X^d$. The main result of this note is an extension of the corresponding result for the $d$-dimensional torus $\mathbb {T}^d$ due to B. Host.
LA - eng
KW - uniform distribution modulo $1$; equidistribution in probability; algebraic number fields; $S$-adele ring; $S$-integer dynamical system; algebraic dynamics; topological dynamics; $a$-adic solenoid; uniform distribution modulo 1; equidistribution in probability; algebraic number fields; $S$-adele ring; $S$-integer dynamical system; algebraic dynamics; topological dynamics; -adic solenoid
UR - http://eudml.org/doc/269860
ER -
References
top- Berend, D., 10.1090/S0002-9947-1984-0760973-X, Trans. Am. Math. Soc. 286 (1984), 505-535. (1984) Zbl0523.22004MR0760973DOI10.1090/S0002-9947-1984-0760973-X
- Bertin, M.-J., Decomps-Guilloux, A., Grandet-Hugot, M., Pathiaux-Delefosse, M., Schreiber, J.-P., Pisot and Salem Numbers, With a preface by David W. Boyd Birkhäuser Basel (1992). (1992) Zbl0772.11041MR1187044
- Chothi, V., Everest, G., Ward, T., -integer dynamical systems: periodic points, J. Reine Angew. Math. 489 (1997), 99-132. (1997) Zbl0879.58037MR1461206
- Drmota, M., Tichy, R. F., 10.1007/BFb0093405, Lecture Notes in Mathematics 1651 Springer, Berlin (1997). (1997) Zbl0877.11043MR1470456DOI10.1007/BFb0093405
- Gouvêa, F. Q., -adic Numbers: An Introduction, Universitext Springer, Berlin (1997). (1997) Zbl0874.11002MR1488696
- Halmos, P. R., 10.1090/S0002-9904-1943-07995-5, Bull. Am. Math. Soc. 49 (1943), 619-624. (1943) Zbl0061.04403MR0008647DOI10.1090/S0002-9904-1943-07995-5
- Hewitt, E., Ross, K. A., Abstract Harmonic Analysis. Vol. I: Structure of topological groups, integration theory, group representations, Fundamental Principles of Mathematical Sciences 115 Springer, Berlin (1979). (1979) MR0551496
- Host, B., Some results of uniform distribution in the multidimensional torus, Ergodic Theory Dyn. Syst. 20 (2000), 439-452. (2000) Zbl1047.37003MR1756978
- Host, B., 10.1007/BF02761660, Isr. J. Math. 91 French (1995), 419-428. (1995) Zbl0839.11030MR1348326DOI10.1007/BF02761660
- Koblitz, N., 10.1007/978-1-4684-0047-2, Graduate Texts in Mathematics 58 Springer, New York (1977). (1977) Zbl0364.12015MR0754003DOI10.1007/978-1-4684-0047-2
- Kuipers, L., Niederreiter, H., Uniform Distribution of Sequences. Pure and Applied Mathematics, John Wiley & Sons New York (1974). (1974) MR0419394
- Mahler, K., -adic Numbers and Their Functions, Cambridge Tracts in Mathematics 76 Cambridge University Press, Cambridge (1981). (1981) Zbl0444.12013MR0644483
- Narkiewicz, W., Elementary and Analytic Theory of Algebraic Numbers, Springer Monographs in Mathematics Springer, Berlin (2004). (2004) Zbl1159.11039MR2078267
- Neukirch, J., Algebraic Number Theory, Fundamental Principles of Mathematical Sciences 322 Springer, Berlin (1999). (1999) Zbl0956.11021MR1697859
- Ramakrishnan, D., Valenza, R. J., 10.1007/978-1-4757-3085-2, Graduate Texts in Mathematics 186 Springer, New York (1999). (1999) Zbl0916.11058MR1680912DOI10.1007/978-1-4757-3085-2
- Robert, A. M., 10.1007/978-1-4757-3254-2, Graduate Texts in Mathematics 198 Springer, New York (2000). (2000) Zbl0947.11035MR1760253DOI10.1007/978-1-4757-3254-2
- Schmidt, K., Dynamical Systems of Algebraic Origin, Progress in Mathematics 128 Birkhäuser, Basel (1995). (1995) Zbl0833.28001MR1345152
- Urban, R., Equidistribution in the -dimensional -adic solenoids, Unif. Distrib. Theory 6 (2011), 21-31. (2011) MR2817758
- Weil, A., Basic Number Theory, Die Grundlehren der Mathematischen Wissenschaften 144 Springer, New York (1974). (1974) Zbl0326.12001MR0427267
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.