Computational studies of conserved mean-curvature flow
Miroslav Kolář; Michal Beneš; Daniel Ševčovič
Mathematica Bohemica (2014)
- Volume: 139, Issue: 4, page 677-684
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKolář, Miroslav, Beneš, Michal, and Ševčovič, Daniel. "Computational studies of conserved mean-curvature flow." Mathematica Bohemica 139.4 (2014): 677-684. <http://eudml.org/doc/269861>.
@article{Kolář2014,
abstract = {The paper presents the results of numerical solution of the evolution law for the constrained mean-curvature flow. This law originates in the theory of phase transitions for crystalline materials and describes the evolution of closed embedded curves with constant enclosed area. It is reformulated by means of the direct method into the system of degenerate parabolic partial differential equations for the curve parametrization. This system is solved numerically and several computational studies are presented as well.},
author = {Kolář, Miroslav, Beneš, Michal, Ševčovič, Daniel},
journal = {Mathematica Bohemica},
keywords = {phase transitions; area-preserving mean-curvature flow; parametric method; phase transitions; area-preserving mean-curvature flow; parametric method},
language = {eng},
number = {4},
pages = {677-684},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Computational studies of conserved mean-curvature flow},
url = {http://eudml.org/doc/269861},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Kolář, Miroslav
AU - Beneš, Michal
AU - Ševčovič, Daniel
TI - Computational studies of conserved mean-curvature flow
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 4
SP - 677
EP - 684
AB - The paper presents the results of numerical solution of the evolution law for the constrained mean-curvature flow. This law originates in the theory of phase transitions for crystalline materials and describes the evolution of closed embedded curves with constant enclosed area. It is reformulated by means of the direct method into the system of degenerate parabolic partial differential equations for the curve parametrization. This system is solved numerically and several computational studies are presented as well.
LA - eng
KW - phase transitions; area-preserving mean-curvature flow; parametric method; phase transitions; area-preserving mean-curvature flow; parametric method
UR - http://eudml.org/doc/269861
ER -
References
top- Allen, S., Cahn, J., 10.1016/0001-6160(79)90196-2, Acta Metall. 27 1084-1095 (1979). (1979) DOI10.1016/0001-6160(79)90196-2
- Beneš, M., 10.1023/B:APOM.0000024485.24886.b9, Appl. Math., Praha 48 (2003), 437-453. (2003) MR2025297DOI10.1023/B:APOM.0000024485.24886.b9
- Beneš, M., Kimura, M., Pauš, P., Ševčovič, D., Tsujikawa, T., Yazaki, S., Application of a curvature adjusted method in image segmentation, Bull. Inst. Math., Acad. Sin. (N.S.) 3 (2008), 509-523. (2008) Zbl1170.53040MR2502611
- Beneš, M., Kratochvíl, J., Křišťan, J., Minárik, V., Pauš, P., 10.1140/epjst/e2009-01174-7, European Phys. J. ST 177 177-192 (2009). (2009) DOI10.1140/epjst/e2009-01174-7
- Beneš, M., Yazaki, S., Kimura, M., Computational studies of non-local anisotropic Allen-Cahn equation, Math. Bohem. 136 (2011), 429-437. (2011) Zbl1249.35153MR2985552
- Cahn, J. W., Hilliard, J. E., 10.1063/1.1730447, J. Chem. Phys. 31 688-699 (1959). (1959) DOI10.1063/1.1730447
- Dolcetta, I. Capuzzo, Vita, S. Finzi, March, R., Area-preserving curve-shortening flows: From phase separation to image processing, Interfaces Free Bound. 4 (2002), 325-343. (2002) MR1935642
- Deckelnick, K., Dziuk, G., Elliott, C. M., 10.1017/S0962492904000224, Acta Numerica 14 (2005), 139-232. (2005) Zbl1113.65097MR2168343DOI10.1017/S0962492904000224
- Esedoḡlu, S., Ruuth, S. J., Tsai, R., Threshold dynamics for high order geometric motions, Interfaces Free Bound. 10 (2008), 263-282. (2008) Zbl1157.65330MR2453132
- Gage, M., 10.1090/conm/051/848933, Nonlinear Problems in Geometry, Proc. AMS Spec. Sess., Mobile/Ala. 1985 Contemp. Math. 51 American Mathematical Society, Providence (1986), 51-62 D. M. DeTurck. (1986) Zbl0608.53002MR0848933DOI10.1090/conm/051/848933
- Grayson, M. A., 10.4310/jdg/1214441371, J. Differ. Geom. 26 (1987), 285-314. (1987) Zbl0667.53001MR0906392DOI10.4310/jdg/1214441371
- Henry, M., Hilhorst, D., Mimura, M., A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation, Discrete Contin. Dyn. Syst., Ser. S 4 (2011), 125-154. (2011) Zbl1207.35189MR2746398
- McCoy, J., 10.4310/AJM.2003.v7.n1.a2, Asian J. Math. 7 (2003), 7-30. (2003) Zbl1078.53067MR2015239DOI10.4310/AJM.2003.v7.n1.a2
- Minárik, V., Beneš, M., Kratochvíl, J., 10.1063/1.3340518, J. Appl. Phys. 107 Article No. 061802, 13 pages (2010). (2010) DOI10.1063/1.3340518
- Osher, S., Sethian, J. A., 10.1016/0021-9991(88)90002-2, J. Comput. Phys. 79 (1988), 12-49. (1988) Zbl0659.65132MR0965860DOI10.1016/0021-9991(88)90002-2
- Rubinstein, J., Sternberg, P., 10.1093/imamat/48.3.249, IMA J. Appl. Math. 48 (1992), 249-264. (1992) Zbl0763.35051MR1167735DOI10.1093/imamat/48.3.249
- Ševčovič, D., Qualitative and quantitative aspects of curvature driven flows of planar curves, Topics on Partial Differential Equations Jindřich Nečas Center for Mathematical Modeling Lecture Notes 2 Matfyzpress, Praha 55-119 (2007), P. Kaplický et al. (2007) MR2856665
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.