Computational studies of conserved mean-curvature flow

Miroslav Kolář; Michal Beneš; Daniel Ševčovič

Mathematica Bohemica (2014)

  • Volume: 139, Issue: 4, page 677-684
  • ISSN: 0862-7959

Abstract

top
The paper presents the results of numerical solution of the evolution law for the constrained mean-curvature flow. This law originates in the theory of phase transitions for crystalline materials and describes the evolution of closed embedded curves with constant enclosed area. It is reformulated by means of the direct method into the system of degenerate parabolic partial differential equations for the curve parametrization. This system is solved numerically and several computational studies are presented as well.

How to cite

top

Kolář, Miroslav, Beneš, Michal, and Ševčovič, Daniel. "Computational studies of conserved mean-curvature flow." Mathematica Bohemica 139.4 (2014): 677-684. <http://eudml.org/doc/269861>.

@article{Kolář2014,
abstract = {The paper presents the results of numerical solution of the evolution law for the constrained mean-curvature flow. This law originates in the theory of phase transitions for crystalline materials and describes the evolution of closed embedded curves with constant enclosed area. It is reformulated by means of the direct method into the system of degenerate parabolic partial differential equations for the curve parametrization. This system is solved numerically and several computational studies are presented as well.},
author = {Kolář, Miroslav, Beneš, Michal, Ševčovič, Daniel},
journal = {Mathematica Bohemica},
keywords = {phase transitions; area-preserving mean-curvature flow; parametric method; phase transitions; area-preserving mean-curvature flow; parametric method},
language = {eng},
number = {4},
pages = {677-684},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Computational studies of conserved mean-curvature flow},
url = {http://eudml.org/doc/269861},
volume = {139},
year = {2014},
}

TY - JOUR
AU - Kolář, Miroslav
AU - Beneš, Michal
AU - Ševčovič, Daniel
TI - Computational studies of conserved mean-curvature flow
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 4
SP - 677
EP - 684
AB - The paper presents the results of numerical solution of the evolution law for the constrained mean-curvature flow. This law originates in the theory of phase transitions for crystalline materials and describes the evolution of closed embedded curves with constant enclosed area. It is reformulated by means of the direct method into the system of degenerate parabolic partial differential equations for the curve parametrization. This system is solved numerically and several computational studies are presented as well.
LA - eng
KW - phase transitions; area-preserving mean-curvature flow; parametric method; phase transitions; area-preserving mean-curvature flow; parametric method
UR - http://eudml.org/doc/269861
ER -

References

top
  1. Allen, S., Cahn, J., 10.1016/0001-6160(79)90196-2, Acta Metall. 27 1084-1095 (1979). (1979) DOI10.1016/0001-6160(79)90196-2
  2. Beneš, M., 10.1023/B:APOM.0000024485.24886.b9, Appl. Math., Praha 48 (2003), 437-453. (2003) MR2025297DOI10.1023/B:APOM.0000024485.24886.b9
  3. Beneš, M., Kimura, M., Pauš, P., Ševčovič, D., Tsujikawa, T., Yazaki, S., Application of a curvature adjusted method in image segmentation, Bull. Inst. Math., Acad. Sin. (N.S.) 3 (2008), 509-523. (2008) Zbl1170.53040MR2502611
  4. Beneš, M., Kratochvíl, J., Křišťan, J., Minárik, V., Pauš, P., 10.1140/epjst/e2009-01174-7, European Phys. J. ST 177 177-192 (2009). (2009) DOI10.1140/epjst/e2009-01174-7
  5. Beneš, M., Yazaki, S., Kimura, M., Computational studies of non-local anisotropic Allen-Cahn equation, Math. Bohem. 136 (2011), 429-437. (2011) Zbl1249.35153MR2985552
  6. Cahn, J. W., Hilliard, J. E., 10.1063/1.1730447, J. Chem. Phys. 31 688-699 (1959). (1959) DOI10.1063/1.1730447
  7. Dolcetta, I. Capuzzo, Vita, S. Finzi, March, R., Area-preserving curve-shortening flows: From phase separation to image processing, Interfaces Free Bound. 4 (2002), 325-343. (2002) MR1935642
  8. Deckelnick, K., Dziuk, G., Elliott, C. M., 10.1017/S0962492904000224, Acta Numerica 14 (2005), 139-232. (2005) Zbl1113.65097MR2168343DOI10.1017/S0962492904000224
  9. Esedoḡlu, S., Ruuth, S. J., Tsai, R., Threshold dynamics for high order geometric motions, Interfaces Free Bound. 10 (2008), 263-282. (2008) Zbl1157.65330MR2453132
  10. Gage, M., 10.1090/conm/051/848933, Nonlinear Problems in Geometry, Proc. AMS Spec. Sess., Mobile/Ala. 1985 Contemp. Math. 51 American Mathematical Society, Providence (1986), 51-62 D. M. DeTurck. (1986) Zbl0608.53002MR0848933DOI10.1090/conm/051/848933
  11. Grayson, M. A., 10.4310/jdg/1214441371, J. Differ. Geom. 26 (1987), 285-314. (1987) Zbl0667.53001MR0906392DOI10.4310/jdg/1214441371
  12. Henry, M., Hilhorst, D., Mimura, M., A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation, Discrete Contin. Dyn. Syst., Ser. S 4 (2011), 125-154. (2011) Zbl1207.35189MR2746398
  13. McCoy, J., 10.4310/AJM.2003.v7.n1.a2, Asian J. Math. 7 (2003), 7-30. (2003) Zbl1078.53067MR2015239DOI10.4310/AJM.2003.v7.n1.a2
  14. Minárik, V., Beneš, M., Kratochvíl, J., 10.1063/1.3340518, J. Appl. Phys. 107 Article No. 061802, 13 pages (2010). (2010) DOI10.1063/1.3340518
  15. Osher, S., Sethian, J. A., 10.1016/0021-9991(88)90002-2, J. Comput. Phys. 79 (1988), 12-49. (1988) Zbl0659.65132MR0965860DOI10.1016/0021-9991(88)90002-2
  16. Rubinstein, J., Sternberg, P., 10.1093/imamat/48.3.249, IMA J. Appl. Math. 48 (1992), 249-264. (1992) Zbl0763.35051MR1167735DOI10.1093/imamat/48.3.249
  17. Ševčovič, D., Qualitative and quantitative aspects of curvature driven flows of planar curves, Topics on Partial Differential Equations Jindřich Nečas Center for Mathematical Modeling Lecture Notes 2 Matfyzpress, Praha 55-119 (2007), P. Kaplický et al. (2007) MR2856665

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.