Todorcevic orderings as examples of ccc forcings without adding random reals
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 1, page 125-132
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topYorioka, Teruyuki. "Todorcevic orderings as examples of ccc forcings without adding random reals." Commentationes Mathematicae Universitatis Carolinae 56.1 (2015): 125-132. <http://eudml.org/doc/269869>.
@article{Yorioka2015,
abstract = {In [Two examples of Borel partially ordered sets with the countable chain condition, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1125–1128], Todorcevic introduced a ccc forcing which is Borel definable in a separable metric space. In [On Todorcevic orderings, Fund. Math., to appear], Balcar, Pazák and Thümmel applied it to more general topological spaces and called such forcings Todorcevic orderings. There they analyze Todorcevic orderings quite deeply. A significant remark is that Thümmel solved the problem of Horn and Tarski by use of Todorcevic ordering [The problem of Horn and Tarski, Proc. Amer. Math. Soc. 142 (2014), no. 6, 1997–2000]. This paper supplements the analysis of Todorcevic orderings due to Balcar, Pazák and Thümmel in [On Todorcevic orderings, Fund. Math., to appear]. More precisely, it is proved that Todorcevic orderings add no random reals whenever they have the countable chain condition.},
author = {Yorioka, Teruyuki},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Todorcevic orderings; random reals; Todorcevic orderings; random reals},
language = {eng},
number = {1},
pages = {125-132},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Todorcevic orderings as examples of ccc forcings without adding random reals},
url = {http://eudml.org/doc/269869},
volume = {56},
year = {2015},
}
TY - JOUR
AU - Yorioka, Teruyuki
TI - Todorcevic orderings as examples of ccc forcings without adding random reals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 1
SP - 125
EP - 132
AB - In [Two examples of Borel partially ordered sets with the countable chain condition, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1125–1128], Todorcevic introduced a ccc forcing which is Borel definable in a separable metric space. In [On Todorcevic orderings, Fund. Math., to appear], Balcar, Pazák and Thümmel applied it to more general topological spaces and called such forcings Todorcevic orderings. There they analyze Todorcevic orderings quite deeply. A significant remark is that Thümmel solved the problem of Horn and Tarski by use of Todorcevic ordering [The problem of Horn and Tarski, Proc. Amer. Math. Soc. 142 (2014), no. 6, 1997–2000]. This paper supplements the analysis of Todorcevic orderings due to Balcar, Pazák and Thümmel in [On Todorcevic orderings, Fund. Math., to appear]. More precisely, it is proved that Todorcevic orderings add no random reals whenever they have the countable chain condition.
LA - eng
KW - Todorcevic orderings; random reals; Todorcevic orderings; random reals
UR - http://eudml.org/doc/269869
ER -
References
top- Balcar B., Jech T., 10.2178/bsl/1146620061, Bull. Symbolic Logic 12 (2006), no. 2, 241–266. Zbl1120.03028MR2223923DOI10.2178/bsl/1146620061
- Balcar B., Pazák T., Thümmel E., On Todorcevic orderings, Fund. Math.(to appear). MR3294608
- Bartoszyński T., Judah H., Set Theory. On the Structure of the Real Line, A K Peters, Ltd., Wellesley, MA, 1995. MR1350295
- Dow A., Steprāns J., 10.1007/BF01270393, Arch. Math. Logic 32 (1992), no. 1, 33–50. MR1186465DOI10.1007/BF01270393
- Horn A., Tarski A., 10.1090/S0002-9947-1948-0028922-8, Trans. Amer. Math. Soc. 64 (1948), 467–497. Zbl0035.03001MR0028922DOI10.1090/S0002-9947-1948-0028922-8
- Judah H., Repický M., 10.1007/BF02762088, Israel J. Math. 92 (1995), no. 1–3, 349–359. Zbl0838.03039MR1357763DOI10.1007/BF02762088
- Larson P., Todorcevic S., 10.1090/S0002-9947-01-02936-1, Trans. Amer. Math. Soc. 354 (2002), no. 5, 1783–1791. Zbl0995.54021MR1881016DOI10.1090/S0002-9947-01-02936-1
- Osuga N., Kamo S., 10.1007/s00153-013-0354-7, Arch. Math. Logic 53 (2014), no. 1–2, 43–56. MR3151397DOI10.1007/s00153-013-0354-7
- Solovay R., 10.2307/1970696, Ann. of Math. (2) 92 (1970), 1–56. Zbl0207.00905MR0265151DOI10.2307/1970696
- Talagrand M., 10.4007/annals.2008.168.981, Ann. of Math. (2) 168 (2008), no. 3, 981–1009. Zbl1185.28002MR2456888DOI10.4007/annals.2008.168.981
- Thümmel E., 10.1090/S0002-9939-2014-11965-4, Proc. Amer. Math. Soc. 142 (2014), no. 6, 1997–2000. MR3182018DOI10.1090/S0002-9939-2014-11965-4
- Todorcevic S., 10.1090/conm/084, Contemporary Mathematics, 84, American Mathematical Society, Providence, Rhode Island, 1989. Zbl0659.54001MR0980949DOI10.1090/conm/084
- Todorcevic S., 10.2307/2048663, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1125–1128. Zbl0727.03030MR1069693DOI10.2307/2048663
- Todorcevic S., 10.4064/fm183-2-7, Fund. Math. 183 (2004), no. 2, 169–183. Zbl1071.28004MR2127965DOI10.4064/fm183-2-7
- Todorcevic S., 10.1007/s10474-013-0362-4, Acta Math. Hungar. 142 (2014), no. 2, 526–533. Zbl1299.03055MR3165500DOI10.1007/s10474-013-0362-4
- Velickovic B., CCC posets of perfect trees, Compos. Math. 79 (1991), no. 3, 279–294. Zbl0735.03023MR1121140
- Yorioka T., 10.1007/s00153-008-0075-5, Arch. Math. Logic 47 (2008), no. 1, 79–90. Zbl1153.03038MR2410821DOI10.1007/s00153-008-0075-5
- Yorioka T., The inequality can be considered as an analogue of Suslin’s Hypothesis, Axiomatic Set Theory and Set-theoretic Topology (Kyoto 2007), Sūrikaisekikenkyūsho Kōkyūroku No. 1595 (2008), 84–88.
- Yorioka T., 10.1016/j.apal.2009.02.006, Ann. Pure Appl. Logic 161 (2010), no. 4, 469–487. Zbl1225.03065MR2584728DOI10.1016/j.apal.2009.02.006
- Yorioka T., Uniformizing ladder system colorings and the rectangle refining property, Proc. Amer. Math. Soc. 138 (2010), no. 8, 2961–2971. Zbl1200.03039MR2644907
- Yorioka T., 10.1016/j.apal.2011.02.003, Ann. Pure Appl. Logic 162 (2011), 752–754. Zbl1225.03065MR2794259DOI10.1016/j.apal.2011.02.003
- Yorioka T., Keeping the covering number of the null ideal small, preprint, 2013.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.