Todorcevic orderings as examples of ccc forcings without adding random reals

Teruyuki Yorioka

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 1, page 125-132
  • ISSN: 0010-2628

Abstract

top
In [Two examples of Borel partially ordered sets with the countable chain condition, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1125–1128], Todorcevic introduced a ccc forcing which is Borel definable in a separable metric space. In [On Todorcevic orderings, Fund. Math., to appear], Balcar, Pazák and Thümmel applied it to more general topological spaces and called such forcings Todorcevic orderings. There they analyze Todorcevic orderings quite deeply. A significant remark is that Thümmel solved the problem of Horn and Tarski by use of Todorcevic ordering [The problem of Horn and Tarski, Proc. Amer. Math. Soc. 142 (2014), no. 6, 1997–2000]. This paper supplements the analysis of Todorcevic orderings due to Balcar, Pazák and Thümmel in [On Todorcevic orderings, Fund. Math., to appear]. More precisely, it is proved that Todorcevic orderings add no random reals whenever they have the countable chain condition.

How to cite

top

Yorioka, Teruyuki. "Todorcevic orderings as examples of ccc forcings without adding random reals." Commentationes Mathematicae Universitatis Carolinae 56.1 (2015): 125-132. <http://eudml.org/doc/269869>.

@article{Yorioka2015,
abstract = {In [Two examples of Borel partially ordered sets with the countable chain condition, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1125–1128], Todorcevic introduced a ccc forcing which is Borel definable in a separable metric space. In [On Todorcevic orderings, Fund. Math., to appear], Balcar, Pazák and Thümmel applied it to more general topological spaces and called such forcings Todorcevic orderings. There they analyze Todorcevic orderings quite deeply. A significant remark is that Thümmel solved the problem of Horn and Tarski by use of Todorcevic ordering [The problem of Horn and Tarski, Proc. Amer. Math. Soc. 142 (2014), no. 6, 1997–2000]. This paper supplements the analysis of Todorcevic orderings due to Balcar, Pazák and Thümmel in [On Todorcevic orderings, Fund. Math., to appear]. More precisely, it is proved that Todorcevic orderings add no random reals whenever they have the countable chain condition.},
author = {Yorioka, Teruyuki},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Todorcevic orderings; random reals; Todorcevic orderings; random reals},
language = {eng},
number = {1},
pages = {125-132},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Todorcevic orderings as examples of ccc forcings without adding random reals},
url = {http://eudml.org/doc/269869},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Yorioka, Teruyuki
TI - Todorcevic orderings as examples of ccc forcings without adding random reals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 1
SP - 125
EP - 132
AB - In [Two examples of Borel partially ordered sets with the countable chain condition, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1125–1128], Todorcevic introduced a ccc forcing which is Borel definable in a separable metric space. In [On Todorcevic orderings, Fund. Math., to appear], Balcar, Pazák and Thümmel applied it to more general topological spaces and called such forcings Todorcevic orderings. There they analyze Todorcevic orderings quite deeply. A significant remark is that Thümmel solved the problem of Horn and Tarski by use of Todorcevic ordering [The problem of Horn and Tarski, Proc. Amer. Math. Soc. 142 (2014), no. 6, 1997–2000]. This paper supplements the analysis of Todorcevic orderings due to Balcar, Pazák and Thümmel in [On Todorcevic orderings, Fund. Math., to appear]. More precisely, it is proved that Todorcevic orderings add no random reals whenever they have the countable chain condition.
LA - eng
KW - Todorcevic orderings; random reals; Todorcevic orderings; random reals
UR - http://eudml.org/doc/269869
ER -

References

top
  1. Balcar B., Jech T., 10.2178/bsl/1146620061, Bull. Symbolic Logic 12 (2006), no. 2, 241–266. Zbl1120.03028MR2223923DOI10.2178/bsl/1146620061
  2. Balcar B., Pazák T., Thümmel E., On Todorcevic orderings, Fund. Math.(to appear). MR3294608
  3. Bartoszyński T., Judah H., Set Theory. On the Structure of the Real Line, A K Peters, Ltd., Wellesley, MA, 1995. MR1350295
  4. Dow A., Steprāns J., 10.1007/BF01270393, Arch. Math. Logic 32 (1992), no. 1, 33–50. MR1186465DOI10.1007/BF01270393
  5. Horn A., Tarski A., 10.1090/S0002-9947-1948-0028922-8, Trans. Amer. Math. Soc. 64 (1948), 467–497. Zbl0035.03001MR0028922DOI10.1090/S0002-9947-1948-0028922-8
  6. Judah H., Repický M., 10.1007/BF02762088, Israel J. Math. 92 (1995), no. 1–3, 349–359. Zbl0838.03039MR1357763DOI10.1007/BF02762088
  7. Larson P., Todorcevic S., 10.1090/S0002-9947-01-02936-1, Trans. Amer. Math. Soc. 354 (2002), no. 5, 1783–1791. Zbl0995.54021MR1881016DOI10.1090/S0002-9947-01-02936-1
  8. Osuga N., Kamo S., 10.1007/s00153-013-0354-7, Arch. Math. Logic 53 (2014), no. 1–2, 43–56. MR3151397DOI10.1007/s00153-013-0354-7
  9. Solovay R., 10.2307/1970696, Ann. of Math. (2) 92 (1970), 1–56. Zbl0207.00905MR0265151DOI10.2307/1970696
  10. Talagrand M., 10.4007/annals.2008.168.981, Ann. of Math. (2) 168 (2008), no. 3, 981–1009. Zbl1185.28002MR2456888DOI10.4007/annals.2008.168.981
  11. Thümmel E., 10.1090/S0002-9939-2014-11965-4, Proc. Amer. Math. Soc. 142 (2014), no. 6, 1997–2000. MR3182018DOI10.1090/S0002-9939-2014-11965-4
  12. Todorcevic S., 10.1090/conm/084, Contemporary Mathematics, 84, American Mathematical Society, Providence, Rhode Island, 1989. Zbl0659.54001MR0980949DOI10.1090/conm/084
  13. Todorcevic S., 10.2307/2048663, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1125–1128. Zbl0727.03030MR1069693DOI10.2307/2048663
  14. Todorcevic S., 10.4064/fm183-2-7, Fund. Math. 183 (2004), no. 2, 169–183. Zbl1071.28004MR2127965DOI10.4064/fm183-2-7
  15. Todorcevic S., 10.1007/s10474-013-0362-4, Acta Math. Hungar. 142 (2014), no. 2, 526–533. Zbl1299.03055MR3165500DOI10.1007/s10474-013-0362-4
  16. Velickovic B., CCC posets of perfect trees, Compos. Math. 79 (1991), no. 3, 279–294. Zbl0735.03023MR1121140
  17. Yorioka T., 10.1007/s00153-008-0075-5, Arch. Math. Logic 47 (2008), no. 1, 79–90. Zbl1153.03038MR2410821DOI10.1007/s00153-008-0075-5
  18. Yorioka T., The inequality 𝔟 > 1 can be considered as an analogue of Suslin’s Hypothesis, Axiomatic Set Theory and Set-theoretic Topology (Kyoto 2007), Sūrikaisekikenkyūsho Kōkyūroku No. 1595 (2008), 84–88. 
  19. Yorioka T., 10.1016/j.apal.2009.02.006, Ann. Pure Appl. Logic 161 (2010), no. 4, 469–487. Zbl1225.03065MR2584728DOI10.1016/j.apal.2009.02.006
  20. Yorioka T., Uniformizing ladder system colorings and the rectangle refining property, Proc. Amer. Math. Soc. 138 (2010), no. 8, 2961–2971. Zbl1200.03039MR2644907
  21. Yorioka T., 10.1016/j.apal.2011.02.003, Ann. Pure Appl. Logic 162 (2011), 752–754. Zbl1225.03065MR2794259DOI10.1016/j.apal.2011.02.003
  22. Yorioka T., Keeping the covering number of the null ideal small, preprint, 2013. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.