On graphs with maximum size in their switching classes
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 1, page 51-61
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKozerenko, Sergiy. "On graphs with maximum size in their switching classes." Commentationes Mathematicae Universitatis Carolinae 56.1 (2015): 51-61. <http://eudml.org/doc/269871>.
@article{Kozerenko2015,
abstract = {In his PhD thesis [Structural aspects of switching classes, Leiden Institute of Advanced Computer Science, 2001] Hage posed the following problem: “characterize the maximum size graphs in switching classes”. These are called s-maximal graphs. In this paper, we study the properties of such graphs. In particular, we show that any graph with sufficiently large minimum degree is s-maximal, we prove that join of two s-maximal graphs is also an s-maximal graph, we give complete characterization of triangle-free s-maximal graphs and non-hamiltonian s-maximal graphs. We also obtain other interesting properties of s-maximal graphs.},
author = {Kozerenko, Sergiy},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Seidel switching; switching class; maximum size graph; Seidel switching; switching class; maximum size graph},
language = {eng},
number = {1},
pages = {51-61},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On graphs with maximum size in their switching classes},
url = {http://eudml.org/doc/269871},
volume = {56},
year = {2015},
}
TY - JOUR
AU - Kozerenko, Sergiy
TI - On graphs with maximum size in their switching classes
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 1
SP - 51
EP - 61
AB - In his PhD thesis [Structural aspects of switching classes, Leiden Institute of Advanced Computer Science, 2001] Hage posed the following problem: “characterize the maximum size graphs in switching classes”. These are called s-maximal graphs. In this paper, we study the properties of such graphs. In particular, we show that any graph with sufficiently large minimum degree is s-maximal, we prove that join of two s-maximal graphs is also an s-maximal graph, we give complete characterization of triangle-free s-maximal graphs and non-hamiltonian s-maximal graphs. We also obtain other interesting properties of s-maximal graphs.
LA - eng
KW - Seidel switching; switching class; maximum size graph; Seidel switching; switching class; maximum size graph
UR - http://eudml.org/doc/269871
ER -
References
top- Cameron P.J., 10.1016/0012-365X(92)00468-7, Discrete Math. 127 (1994), 63–74. Zbl0802.05042MR1273592DOI10.1016/0012-365X(92)00468-7
- Colbourn C.J., Corneil D.G., 10.1016/0166-218X(80)90038-4, Discrete Appl. Math. 2 (1980), 181–184. Zbl0438.05054MR0588697DOI10.1016/0166-218X(80)90038-4
- Ehrenfeucht A., Hage J., Harju T., Rozenberg G., 10.1016/S0020-0190(00)00020-X, Inform. Process. Lett. 73 (2000), 153–156. MR1755051DOI10.1016/S0020-0190(00)00020-X
- Hage J., Structural aspects of switching classes, PhD thesis, Leiden Institute of Advanced Computer Science, 2001.
- Hage J., Harju T., 10.1006/eujc.1997.0191, Europ. J. Combin. 19 (1998), 321–327. Zbl0905.05057MR1621017DOI10.1006/eujc.1997.0191
- Harries D., Liebeck H., 10.1017/S144678870001199X, J. Austral. Math. Soc. 26 (1978), 475–486. Zbl0411.05044MR0520101DOI10.1017/S144678870001199X
- Hertz A., 10.1016/S0166-218X(98)00134-6, Discrete Appl. Math. 89 (1998), 263–267. Zbl0930.05044MR1663113DOI10.1016/S0166-218X(98)00134-6
- Jelínková E., Suchý O., Hliněny P., Kratochvíl J., Parameterized problems related to Seidel's switching, Discrete Math. Theor. Comp. Sci. 13 (2011), no. 2, 19–44. Zbl1283.68164
- Krasikov I., 10.1155/S0161171288001012, Internat. J. Math. Math. Sci. 11 (1988), 825–827. Zbl0663.05046MR0959466DOI10.1155/S0161171288001012
- Krasikov I., Roditty Y., 10.1016/0095-8956(92)90050-8, J. Combin. Theory Ser. B 54 (1992), 189–195. MR1152446DOI10.1016/0095-8956(92)90050-8
- van Lint J.H., Seidel J.J., 10.1016/S1385-7258(66)50038-5, Indag. Math. 28 (1966), 335–348. Zbl0138.41702MR0200799DOI10.1016/S1385-7258(66)50038-5
- Mallows C.L., Sloane N.J.A., 10.1137/0128070, SIAM J. Appl. Math. 28 (1975), 876–880. Zbl0275.05125MR0427128DOI10.1137/0128070
- Ore O, Theory of Graphs, Amer. Math. Soc., Providence, Rhode Island, 1962. Zbl0484.05030
- Seidel J.J., A survey of two-graphs, Proc. Int. Coll. 1 (1973), 481–511. Zbl0352.05016MR0550136
- Stanley R.P., 10.1016/0095-8956(85)90078-4, J. Combin. Theory Ser. B 38 (1985), 132–138. Zbl0572.05046MR0787322DOI10.1016/0095-8956(85)90078-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.