Hardy and Cowling-Price theorems for a Cherednik type operator on the real line

Mohamed Ali Mourou

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 1, page 7-22
  • ISSN: 0010-2628

Abstract

top
This paper is aimed to establish Hardy and Cowling-Price type theorems for the Fourier transform tied to a generalized Cherednik operator on the real line.

How to cite

top

Mourou, Mohamed Ali. "Hardy and Cowling-Price theorems for a Cherednik type operator on the real line." Commentationes Mathematicae Universitatis Carolinae 56.1 (2015): 7-22. <http://eudml.org/doc/269876>.

@article{Mourou2015,
abstract = {This paper is aimed to establish Hardy and Cowling-Price type theorems for the Fourier transform tied to a generalized Cherednik operator on the real line.},
author = {Mourou, Mohamed Ali},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {differential-difference operator; generalized Fourier transform; Hardy and Cowling-Price theorems; differential-difference operator; generalized Fourier transform; Hardy theorem; Cowling-Price theorem},
language = {eng},
number = {1},
pages = {7-22},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Hardy and Cowling-Price theorems for a Cherednik type operator on the real line},
url = {http://eudml.org/doc/269876},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Mourou, Mohamed Ali
TI - Hardy and Cowling-Price theorems for a Cherednik type operator on the real line
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 1
SP - 7
EP - 22
AB - This paper is aimed to establish Hardy and Cowling-Price type theorems for the Fourier transform tied to a generalized Cherednik operator on the real line.
LA - eng
KW - differential-difference operator; generalized Fourier transform; Hardy and Cowling-Price theorems; differential-difference operator; generalized Fourier transform; Hardy theorem; Cowling-Price theorem
UR - http://eudml.org/doc/269876
ER -

References

top
  1. Ben Farah S., Mokni K., 10.1016/S1631-073X(03)00220-6, C.R. Acad. Sci. Paris 336 (2003), 889–892. Zbl1026.43009MR1994589DOI10.1016/S1631-073X(03)00220-6
  2. Ben Farah S., Mokni K., Trimèche K., 10.1155/S0161171204209140, Int. J. Math. Math. Sci. 33 (2004), 1757–1769. DOI10.1155/S0161171204209140
  3. Cherednik I., 10.1007/BF01243918, Invent. Math. 106 (1991), 411–432. MR1128220DOI10.1007/BF01243918
  4. Cowling M.G., Price J.F., 10.1007/BFb0069174, Lecture Notes in Mathematics, 992, Springer, Berlin, 1983, pp. 443–449. Zbl0516.43002MR0729369DOI10.1007/BFb0069174
  5. Eguchi M., Korzumi S., Kumahara K., 10.1017/S1446788700001579, J. Austral. Math. Soc. Ser. A 68 (2000), 55–67. MR1727227DOI10.1017/S1446788700001579
  6. Fitouhi A., 10.1007/BF01889609, J. Constr. Approx. 5 (1989), 241–270. Zbl0696.41027MR0989675DOI10.1007/BF01889609
  7. Gallardo L., Trimèche K., 10.1515/apam.2010.011, Adv. Pure Appl. Math. 1 (2010), no. 2, 163–194. Zbl1208.47027MR2679886DOI10.1515/apam.2010.011
  8. Hardy G.H., 10.1112/jlms/s1-8.3.227, J. London Math. Soc. 8 (1933), 227–231. DOI10.1112/jlms/s1-8.3.227
  9. Heckman G.J., Schlichtkrull H., Harmonic Analysis and Special Functions on Symmetric Spaces, Academic Press, San Diego, CA, 1994. Zbl0836.43001MR1313912
  10. Koornwinder T.H., 10.1007/BF02386203, Ark. Mat. 13 (1975), 145–159. Zbl0303.42022MR0374832DOI10.1007/BF02386203
  11. Mourou M.A., 10.1142/S0219530510001692, Anal. Appl. (Singap.) 8 (2010), no. 4, 387–408. Zbl1200.42003MR2726071DOI10.1142/S0219530510001692
  12. Opdam E., Dunkl Operators for Real and Complex Reflection Groups, MSJ Memoirs, 8, Mathematical Society of Japan, Tokyo, 2000. Zbl0984.33001MR1805058
  13. Schapira B., 10.1007/s00039-008-0658-7, Geom. Funct. Anal. 18 (2008), 222–250. MR2399102DOI10.1007/s00039-008-0658-7
  14. Trimèche K., 10.1006/acha.1996.0206, Appl. Comput. Harmon. Anal. 4 (1997), 97–112. Zbl0872.34059MR1429682DOI10.1006/acha.1996.0206
  15. Trimèche K., Cowling-Price and Hardy theorems on Chébli-Trimèche hypergroups, Glob. J. Pure Appl. Math. 1 (2005), no. 3, 286–305. Zbl1122.43005MR2243232
  16. Trimèche K., 10.1515/apam.2010.015, Adv. Pure Appl. Math. 1 (2010), no. 3, 293–323. Zbl1204.33028MR2719369DOI10.1515/apam.2010.015
  17. Trimèche K., 10.1515/apam.2011.022, Adv. Pure Appl. Math. 2 (2011), no. 1, 23–46. Zbl1207.33024MR2769308DOI10.1515/apam.2011.022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.