Equality in Wielandt’s eigenvalue inequality
Special Matrices (2015)
- Volume: 3, Issue: 1, page 53-57, electronic only
- ISSN: 2300-7451
Access Full Article
topAbstract
topHow to cite
topShmuel Friedland. "Equality in Wielandt’s eigenvalue inequality." Special Matrices 3.1 (2015): 53-57, electronic only. <http://eudml.org/doc/269946>.
@article{ShmuelFriedland2015,
abstract = {In this paper we give necessary and sufficient conditions for the equality case in Wielandt’s eigenvalue inequality.},
author = {Shmuel Friedland},
journal = {Special Matrices},
keywords = {Lidski’s theorem; Wielandt’s eigenvalue inequality; Lidski's theorem; Wielandt's eigenvalue inequality; equality case},
language = {eng},
number = {1},
pages = {53-57, electronic only},
title = {Equality in Wielandt’s eigenvalue inequality},
url = {http://eudml.org/doc/269946},
volume = {3},
year = {2015},
}
TY - JOUR
AU - Shmuel Friedland
TI - Equality in Wielandt’s eigenvalue inequality
JO - Special Matrices
PY - 2015
VL - 3
IS - 1
SP - 53
EP - 57, electronic only
AB - In this paper we give necessary and sufficient conditions for the equality case in Wielandt’s eigenvalue inequality.
LA - eng
KW - Lidski’s theorem; Wielandt’s eigenvalue inequality; Lidski's theorem; Wielandt's eigenvalue inequality; equality case
UR - http://eudml.org/doc/269946
ER -
References
top- [1] K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations, I. Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 652–655. [Crossref]
- [2] S. Friedland, Extremal eigenvalue problems, Bull. Brazilian Math. Soc. 9 (1978), 13-40. Zbl0441.47024
- [3] S. Friedland, A generalization of the Motzkin-Taussky theorem, Linear Algebra Appl. 36 (1981), 103-109. [Crossref] Zbl0452.15003
- [4] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, Second edition, 1952.
- [5] T. Kato, A Short Introduction to Perturbation Theory for Linear Operators, Springer-Verlag, 2nd ed., New York 1982. Zbl0493.47008
- [6] V.B. Lidskii, On the characteristic numbers of the sum and product of symmetric matrices. Doklady Akad. Nauk SSSR (N.S.) 75, (1950) 769–772.
- [7] N. Moiseyev and S. Friedland, The association of resonance states with incomplete spectrum of finite complex scaled Hamiltonian matrices, Phys. Rev. A 22 (1980), 619-624.
- [8] F. Rellich, Perturbation Theory of Eigenvalue Problems, Gordon & Breach, New York, 1969.
- [9] H. Wielandt, An extremum property of sums of eigenvalues, Proc. Amer. Math. Soc. 6 (1955), 106-110. [Crossref] Zbl0064.24703
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.