On the C⁰-closing lemma
Annales Polonici Mathematici (1996)
- Volume: 64, Issue: 2, page 131-138
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topAnna A. Kwiecińska. "On the C⁰-closing lemma." Annales Polonici Mathematici 64.2 (1996): 131-138. <http://eudml.org/doc/269953>.
@article{AnnaA1996,
abstract = {A proof of the C⁰-closing lemma for noninvertible discrete dynamical systems and its extension to the noncompact case are presented.},
author = {Anna A. Kwiecińska},
journal = {Annales Polonici Mathematici},
keywords = {closing lemma; nonwandering point; periodic point; wandering point; eventually periodic point; extension theorem; restriction},
language = {eng},
number = {2},
pages = {131-138},
title = {On the C⁰-closing lemma},
url = {http://eudml.org/doc/269953},
volume = {64},
year = {1996},
}
TY - JOUR
AU - Anna A. Kwiecińska
TI - On the C⁰-closing lemma
JO - Annales Polonici Mathematici
PY - 1996
VL - 64
IS - 2
SP - 131
EP - 138
AB - A proof of the C⁰-closing lemma for noninvertible discrete dynamical systems and its extension to the noncompact case are presented.
LA - eng
KW - closing lemma; nonwandering point; periodic point; wandering point; eventually periodic point; extension theorem; restriction
UR - http://eudml.org/doc/269953
ER -
References
top- [1] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- [2] H. Lehning, Dynamics of typical continuous functions, preprint, 1993. Zbl0843.58077
- [3] Z. Nitecki and M. Shub, Filtrations, decompositions and explosions, Amer. J. Math. 97 (1975), 1029-1047. Zbl0324.58015
- [4] C. C. Pugh, Improved closing lemma, Amer. J. Math. 89 (1967), 1010-1021. Zbl0167.21804
- [5] W. Szlenk, Introduction to the Theory of Smooth Dynamical Systems, Polish Sci. Publ., Warszawa, 1984.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.