On weak solutions of functional-differential abstract nonlocal Cauchy problems
Annales Polonici Mathematici (1997)
- Volume: 65, Issue: 2, page 163-170
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Bochenek, An abstract semilinear first order differential equation in the hyperbolic case, Ann. Polon. Math. 61 (1995), 13-23. Zbl0847.34064
- [2] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494-505. Zbl0748.34040
- [3] L. Byszewski, Uniqueness criterion for solution of abstract nonlocal Cauchy problem, J. Appl. Math. Stochastic Anal. 6 (1993), 49-54. Zbl0776.34050
- [4] L. Byszewski, Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem, in: Selected Problems of Mathematics, Cracow University of Technology, Anniversary Issue 6 (1995), 25-33.
- [5] M. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math. 11 (1972), 57-94.
- [6] L. Evans, Nonlinear evolution equations in an arbitrary Banach space, Israel J. Math. 26 (1977), 1-42. Zbl0349.34043
- [7] A. Kartsatos, A direct method for the existence of evolution operators associated with functional evolutions in general Banach spaces, Funkcial. Ekvac. 31 (1988), 89-102. Zbl0654.47028
- [8] A. Kartsatos and M. Parrott, A simplified approach to the existence and stability problem of a functional evolution equation in a general Banach space, in: Infinite Dimensional Systems, (F. Kappel and W. Schappacher (eds.), Lecture Notes in Math. 1076, Springer, Berlin, 1984, 115-122. Zbl0544.34064
- [9] T. Winiarska, Parabolic equations with coefficients depending on t and parameters, Ann. Polon. Math. 51 (1990), 325-339. Zbl0738.35020
- [10] T. Winiarska, Regularity of solutions of parabolic equations with coefficients depending on t and parameters, Ann. Polon. Math. 56 (1992), 311-317. Zbl0763.35015