Polynomial set-valued functions

Joanna Szczawińska

Annales Polonici Mathematici (1996)

  • Volume: 65, Issue: 1, page 55-65
  • ISSN: 0066-2216

Abstract

top
The aim of this paper is to give a necessary and sufficient condition for a set-valued function to be a polynomial s.v. function of order at most 2.

How to cite

top

Joanna Szczawińska. "Polynomial set-valued functions." Annales Polonici Mathematici 65.1 (1996): 55-65. <http://eudml.org/doc/270019>.

@article{JoannaSzczawińska1996,
abstract = {The aim of this paper is to give a necessary and sufficient condition for a set-valued function to be a polynomial s.v. function of order at most 2.},
author = {Joanna Szczawińska},
journal = {Annales Polonici Mathematici},
keywords = {polynomial set-valued functions; difference operators; biadditive functions; Jensen function},
language = {eng},
number = {1},
pages = {55-65},
title = {Polynomial set-valued functions},
url = {http://eudml.org/doc/270019},
volume = {65},
year = {1996},
}

TY - JOUR
AU - Joanna Szczawińska
TI - Polynomial set-valued functions
JO - Annales Polonici Mathematici
PY - 1996
VL - 65
IS - 1
SP - 55
EP - 65
AB - The aim of this paper is to give a necessary and sufficient condition for a set-valued function to be a polynomial s.v. function of order at most 2.
LA - eng
KW - polynomial set-valued functions; difference operators; biadditive functions; Jensen function
UR - http://eudml.org/doc/270019
ER -

References

top
  1. [1] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977. Zbl0346.46038
  2. [2] R. Ger, On extensions of polynomial functions, Results Math. 26 (1994), 281-289. Zbl0829.39006
  3. [3] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, PWN and Uniw. Śl., Warszawa-Kraków-Katowice, 1985. 
  4. [4] K. Nikodem, K-convex and K-concave set valued functions, Zeszyty Naukowe Politech. Łódzkiej, Mat. 559, Rozprawy Naukowe 114, 1989. 
  5. [5] H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169. 
  6. [6] H. Rådström, One-parameter semigroups of subsets of a real linear space, Ark. Mat. 4 (1960), 87-97. Zbl0093.30401
  7. [7] A. Smajdor, On a functional equation, Ann. Math. Sil. 8 (1994), 217-226. Zbl0822.39006

NotesEmbed ?

top

You must be logged in to post comments.