Dunkl-Gabor transform and time-frequency concentration
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 1, page 255-270
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGhobber, Saifallah. "Dunkl-Gabor transform and time-frequency concentration." Czechoslovak Mathematical Journal 65.1 (2015): 255-270. <http://eudml.org/doc/270039>.
@article{Ghobber2015,
abstract = {The aim of this paper is to prove two new uncertainty principles for the Dunkl-Gabor transform. The first of these results is a new version of Heisenberg’s uncertainty inequality which states that the Dunkl-Gabor transform of a nonzero function with respect to a nonzero radial window function cannot be time and frequency concentrated around zero. The second result is an analogue of Benedicks’ uncertainty principle which states that the Dunkl-Gabor transform of a nonzero function with respect to a particular window function cannot be time-frequency concentrated in a subset of the form $S\times \mathcal \{B\}(0,b)$ in the time-frequency plane $\mathbb \{R\}^d\times \widehat\{\mathbb \{R\}\}^d$. As a side result we generalize a related result of Donoho and Stark on stable recovery of a signal which has been truncated and corrupted by noise.},
author = {Ghobber, Saifallah},
journal = {Czechoslovak Mathematical Journal},
keywords = {time-frequency concentration; Dunkl-Gabor transform; uncertainty principles},
language = {eng},
number = {1},
pages = {255-270},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dunkl-Gabor transform and time-frequency concentration},
url = {http://eudml.org/doc/270039},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Ghobber, Saifallah
TI - Dunkl-Gabor transform and time-frequency concentration
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 255
EP - 270
AB - The aim of this paper is to prove two new uncertainty principles for the Dunkl-Gabor transform. The first of these results is a new version of Heisenberg’s uncertainty inequality which states that the Dunkl-Gabor transform of a nonzero function with respect to a nonzero radial window function cannot be time and frequency concentrated around zero. The second result is an analogue of Benedicks’ uncertainty principle which states that the Dunkl-Gabor transform of a nonzero function with respect to a particular window function cannot be time-frequency concentrated in a subset of the form $S\times \mathcal {B}(0,b)$ in the time-frequency plane $\mathbb {R}^d\times \widehat{\mathbb {R}}^d$. As a side result we generalize a related result of Donoho and Stark on stable recovery of a signal which has been truncated and corrupted by noise.
LA - eng
KW - time-frequency concentration; Dunkl-Gabor transform; uncertainty principles
UR - http://eudml.org/doc/270039
ER -
References
top- Bonami, A., Demange, B., Jaming, P., 10.4171/RMI/337, Rev. Mat. Iberoam. 19 (2003), 23-55. (2003) MR1993414DOI10.4171/RMI/337
- Jeu, M. F. E. de, 10.1007/BF01244305, Invent. Math. 113 (1993), 147-162. (1993) Zbl0789.33007MR1223227DOI10.1007/BF01244305
- Demange, B., 10.1112/S0024610705006903, J. Lond. Math. Soc., II. Ser. 72 (2005), 717-730. (2005) Zbl1090.42004MR2190333DOI10.1112/S0024610705006903
- Donoho, D. L., Stark, P. B., 10.1137/0149053, SIAM J. Appl. Math. 49 (1989), 906-931. (1989) Zbl0689.42001MR0997928DOI10.1137/0149053
- Dunkl, C. F., 10.4153/CJM-1991-069-8, Can. J. Math. 43 (1991), 1213-1227. (1991) Zbl0827.33010MR1145585DOI10.4153/CJM-1991-069-8
- Dunkl, C. F., 10.1090/S0002-9947-1989-0951883-8, Trans. Am. Math. Soc. 311 (1989), 16-183. (1989) Zbl0652.33004MR0951883DOI10.1090/S0002-9947-1989-0951883-8
- Faris, W. G., 10.1063/1.523667, J. Math. Phys. 19 (1978), 461-466. (1978) MR0484134DOI10.1063/1.523667
- Ghobber, S., Jaming, P., 10.4064/sm220-3-1, Stud. Math. 220 (2014), 197-220. (2014) MR3173045DOI10.4064/sm220-3-1
- Gröchenig, K., Uncertainty principles for time-frequency representations, Advances in Gabor Analysis H. G. Feichtinger et al. Applied and Numerical Harmonic Analysis Birkhäuser, Basel (2003), 11-30. (2003) Zbl1039.42004MR1955930
- Havin, V., Jöricke, B., The Uncertainty Principle in Harmonic Analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. 28 Springer, Berlin (1994). (1994) MR1303780
- Hogan, J. A., Lakey, J. D., Time-Frequency and Time-Scale Methods: Adaptive Decompositions, Uncertainty Principles, and Sampling, Applied and Numerical Harmonic Analysis Birkhäuser, Boston (2005). (2005) Zbl1079.42027MR2107799
- Lapointe, L., Vinet, L., 10.1007/BF02099456, Commun. Math. Phys. 178 (1996), 425-452. (1996) Zbl0859.35103MR1389912DOI10.1007/BF02099456
- Mejjaoli, H., 10.1080/10652469.2011.647015, Integral Transforms Spec. Funct. 23 (2012), 875-890. (2012) MR2998902DOI10.1080/10652469.2011.647015
- Mejjaoli, H., Sraieb, N., 10.1007/s00009-008-0161-2, Mediterr. J. Math. 5 (2008), 443-466. (2008) Zbl1181.26036MR2465571DOI10.1007/s00009-008-0161-2
- Polychronakos, A. P., 10.1103/PhysRevLett.69.703, Phys. Rev. Lett. 69 (1992), 703-705. (1992) Zbl0968.37521MR1174716DOI10.1103/PhysRevLett.69.703
- Rösler, M., 10.1017/S0004972700033025, Bull. Aust. Math. Soc. 59 (1999), 353-360. (1999) Zbl0939.33012MR1698045DOI10.1017/S0004972700033025
- Rösler, M., Voit, M., 10.1006/aama.1998.0609, Adv. Appl. Math. 21 (1998), 575-643. (1998) Zbl0919.60072MR1652182DOI10.1006/aama.1998.0609
- Shimeno, N., A note on the uncertainty principle for the Dunkl transform, J. Math. Sci., Tokyo 8 (2001), 33-42. (2001) Zbl0976.33015MR1818904
- Wilczok, E., New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform, Doc. Math., J. DMV (electronic) 5 (2000), 201-226. (2000) Zbl0947.42024MR1758876
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.