A new characterization for the simple group by order and some character degrees
Behrooz Khosravi; Behnam Khosravi; Bahman Khosravi; Zahra Momen
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 1, page 271-280
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKhosravi, Behrooz, et al. "A new characterization for the simple group ${\rm PSL}(2,p^2)$ by order and some character degrees." Czechoslovak Mathematical Journal 65.1 (2015): 271-280. <http://eudml.org/doc/270042>.
@article{Khosravi2015,
abstract = {Let $G$ be a finite group and $p$ a prime number. We prove that if $G$ is a finite group of order $|\{\rm PSL\}(2,p^2)|$ such that $G$ has an irreducible character of degree $p^2$ and we know that $G$ has no irreducible character $\theta $ such that $2p\mid \theta (1)$, then $G$ is isomorphic to $\{\rm PSL\}(2,p^2)$. As a consequence of our result we prove that $\{\rm PSL\}(2,p^2)$ is uniquely determined by the structure of its complex group algebra.},
author = {Khosravi, Behrooz, Khosravi, Behnam, Khosravi, Bahman, Momen, Zahra},
journal = {Czechoslovak Mathematical Journal},
keywords = {character degree; order; projective special linear group},
language = {eng},
number = {1},
pages = {271-280},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new characterization for the simple group $\{\rm PSL\}(2,p^2)$ by order and some character degrees},
url = {http://eudml.org/doc/270042},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Khosravi, Behrooz
AU - Khosravi, Behnam
AU - Khosravi, Bahman
AU - Momen, Zahra
TI - A new characterization for the simple group ${\rm PSL}(2,p^2)$ by order and some character degrees
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 271
EP - 280
AB - Let $G$ be a finite group and $p$ a prime number. We prove that if $G$ is a finite group of order $|{\rm PSL}(2,p^2)|$ such that $G$ has an irreducible character of degree $p^2$ and we know that $G$ has no irreducible character $\theta $ such that $2p\mid \theta (1)$, then $G$ is isomorphic to ${\rm PSL}(2,p^2)$. As a consequence of our result we prove that ${\rm PSL}(2,p^2)$ is uniquely determined by the structure of its complex group algebra.
LA - eng
KW - character degree; order; projective special linear group
UR - http://eudml.org/doc/270042
ER -
References
top- Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A., Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, Oxford (1985). (1985) Zbl0568.20001MR0827219
- Crescenzo, P., 10.1016/0001-8708(75)90083-3, Adv. Math. 17 (1975), 25-29. (1975) Zbl0305.10016MR0371812DOI10.1016/0001-8708(75)90083-3
- Huppert, B., Some simple groups which are determined by the set of their character degrees. I, Ill. J. Math. 44 (2000), 828-842. (2000) Zbl0972.20006MR1804317
- Huppert, B., Character Theory of Finite Groups, De Gruyter Expositions in Mathematics 25 Walter de Gruyter, Berlin (1998). (1998) Zbl0932.20007MR1645304
- Isaacs, I. M., 10.1090/S0002-9947-03-03462-7, Trans. Am. Math. Soc. 356 (2004), 1155-1183. (2004) Zbl1034.20009MR2021616DOI10.1090/S0002-9947-03-03462-7
- Isaacs, I. M., Character Theory of Finite Groups, Pure and Applied Mathematics 69 Academic Press, New York (1976). (1976) Zbl0337.20005MR0460423
- Khosravi, B., Groups with the same orders and large character degrees as , Quasigroups Relat. Syst. 21 (2013), 239-243. (2013) Zbl1294.20009MR3203150
- Khosravi, B., Khosravi, B., Khosravi, B., 10.1007/s00605-013-0582-2, Monatsh. Math. 175 (2014), 277-282. (2014) Zbl1304.20042MR3260870DOI10.1007/s00605-013-0582-2
- Kimmerle, W., Group rings of finite simple groups, Resen. Inst. Mat. Estat. Univ. São Paulo 5 (2002), 261-278. (2002) Zbl1047.20007MR2015338
- Lewis, M. L., White, D. L., 10.1016/j.jalgebra.2011.03.028, J. Algebra 336 (2011), 158-183. (2011) Zbl1246.20006MR2802535DOI10.1016/j.jalgebra.2011.03.028
- Nagl, M., Charakterisierung der symmetrischen Gruppen durch ihre komplexe Gruppenalgebra, Stuttgarter Mathematische Berichte, http://www.mathematik.uni-stuttgart. de/preprints/downloads/2011/2011-007.pdf (2011), German. (2011)
- Nagl, M., Über das Isomorphieproblem von Gruppenalgebren endlicher einfacher Gruppen, Diplomarbeit, Universität Stuttgart (2008), German. (2008)
- Tong-Viet, H. P., 10.1007/s10468-010-9247-1, Algebr. Represent. Theory 15 (2012), 379-389. (2012) Zbl1252.20005MR2892513DOI10.1007/s10468-010-9247-1
- Tong-Viet, H. P., 10.1016/j.jalgebra.2012.02.011, J. Algebra 357 (2012), 61-68. (2012) Zbl1259.20008MR2905242DOI10.1016/j.jalgebra.2012.02.011
- Tong-Viet, H. P., 10.1007/s00605-011-0301-9, Monatsh. Math. 166 (2012), 559-577. (2012) Zbl1255.20006MR2925155DOI10.1007/s00605-011-0301-9
- Tong-Viet, H. P., 10.1016/j.jalgebra.2010.11.018, J. Algebra 334 (2011), 275-284. (2011) Zbl1246.20007MR2787664DOI10.1016/j.jalgebra.2010.11.018
- White, D. L., 10.1216/RMJ-2009-39-5-1713, Rocky Mt. J. Math. 39 (2009), 1713-1739. (2009) Zbl1180.20008MR2546661DOI10.1216/RMJ-2009-39-5-1713
- Xu, H., Chen, G., Yan, Y., 10.1080/00927872.2013.842242, Commun. Algebra 42 5374-5380 (2014). (2014) Zbl1297.20012MR3223645DOI10.1080/00927872.2013.842242
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.