A new characterization for the simple group PSL ( 2 , p 2 ) by order and some character degrees

Behrooz Khosravi; Behnam Khosravi; Bahman Khosravi; Zahra Momen

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 1, page 271-280
  • ISSN: 0011-4642

Abstract

top
Let G be a finite group and p a prime number. We prove that if G is a finite group of order | PSL ( 2 , p 2 ) | such that G has an irreducible character of degree p 2 and we know that G has no irreducible character θ such that 2 p θ ( 1 ) , then G is isomorphic to PSL ( 2 , p 2 ) . As a consequence of our result we prove that PSL ( 2 , p 2 ) is uniquely determined by the structure of its complex group algebra.

How to cite

top

Khosravi, Behrooz, et al. "A new characterization for the simple group ${\rm PSL}(2,p^2)$ by order and some character degrees." Czechoslovak Mathematical Journal 65.1 (2015): 271-280. <http://eudml.org/doc/270042>.

@article{Khosravi2015,
abstract = {Let $G$ be a finite group and $p$ a prime number. We prove that if $G$ is a finite group of order $|\{\rm PSL\}(2,p^2)|$ such that $G$ has an irreducible character of degree $p^2$ and we know that $G$ has no irreducible character $\theta $ such that $2p\mid \theta (1)$, then $G$ is isomorphic to $\{\rm PSL\}(2,p^2)$. As a consequence of our result we prove that $\{\rm PSL\}(2,p^2)$ is uniquely determined by the structure of its complex group algebra.},
author = {Khosravi, Behrooz, Khosravi, Behnam, Khosravi, Bahman, Momen, Zahra},
journal = {Czechoslovak Mathematical Journal},
keywords = {character degree; order; projective special linear group},
language = {eng},
number = {1},
pages = {271-280},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new characterization for the simple group $\{\rm PSL\}(2,p^2)$ by order and some character degrees},
url = {http://eudml.org/doc/270042},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Khosravi, Behrooz
AU - Khosravi, Behnam
AU - Khosravi, Bahman
AU - Momen, Zahra
TI - A new characterization for the simple group ${\rm PSL}(2,p^2)$ by order and some character degrees
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 271
EP - 280
AB - Let $G$ be a finite group and $p$ a prime number. We prove that if $G$ is a finite group of order $|{\rm PSL}(2,p^2)|$ such that $G$ has an irreducible character of degree $p^2$ and we know that $G$ has no irreducible character $\theta $ such that $2p\mid \theta (1)$, then $G$ is isomorphic to ${\rm PSL}(2,p^2)$. As a consequence of our result we prove that ${\rm PSL}(2,p^2)$ is uniquely determined by the structure of its complex group algebra.
LA - eng
KW - character degree; order; projective special linear group
UR - http://eudml.org/doc/270042
ER -

References

top
  1. Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A., Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, Oxford (1985). (1985) Zbl0568.20001MR0827219
  2. Crescenzo, P., 10.1016/0001-8708(75)90083-3, Adv. Math. 17 (1975), 25-29. (1975) Zbl0305.10016MR0371812DOI10.1016/0001-8708(75)90083-3
  3. Huppert, B., Some simple groups which are determined by the set of their character degrees. I, Ill. J. Math. 44 (2000), 828-842. (2000) Zbl0972.20006MR1804317
  4. Huppert, B., Character Theory of Finite Groups, De Gruyter Expositions in Mathematics 25 Walter de Gruyter, Berlin (1998). (1998) Zbl0932.20007MR1645304
  5. Isaacs, I. M., 10.1090/S0002-9947-03-03462-7, Trans. Am. Math. Soc. 356 (2004), 1155-1183. (2004) Zbl1034.20009MR2021616DOI10.1090/S0002-9947-03-03462-7
  6. Isaacs, I. M., Character Theory of Finite Groups, Pure and Applied Mathematics 69 Academic Press, New York (1976). (1976) Zbl0337.20005MR0460423
  7. Khosravi, B., Groups with the same orders and large character degrees as P G L ( 2 , 9 ) , Quasigroups Relat. Syst. 21 (2013), 239-243. (2013) Zbl1294.20009MR3203150
  8. Khosravi, B., Khosravi, B., Khosravi, B., 10.1007/s00605-013-0582-2, Monatsh. Math. 175 (2014), 277-282. (2014) Zbl1304.20042MR3260870DOI10.1007/s00605-013-0582-2
  9. Kimmerle, W., Group rings of finite simple groups, Resen. Inst. Mat. Estat. Univ. São Paulo 5 (2002), 261-278. (2002) Zbl1047.20007MR2015338
  10. Lewis, M. L., White, D. L., 10.1016/j.jalgebra.2011.03.028, J. Algebra 336 (2011), 158-183. (2011) Zbl1246.20006MR2802535DOI10.1016/j.jalgebra.2011.03.028
  11. Nagl, M., Charakterisierung der symmetrischen Gruppen durch ihre komplexe Gruppenalgebra, Stuttgarter Mathematische Berichte, http://www.mathematik.uni-stuttgart. de/preprints/downloads/2011/2011-007.pdf (2011), German. (2011) 
  12. Nagl, M., Über das Isomorphieproblem von Gruppenalgebren endlicher einfacher Gruppen, Diplomarbeit, Universität Stuttgart (2008), German. (2008) 
  13. Tong-Viet, H. P., 10.1007/s10468-010-9247-1, Algebr. Represent. Theory 15 (2012), 379-389. (2012) Zbl1252.20005MR2892513DOI10.1007/s10468-010-9247-1
  14. Tong-Viet, H. P., 10.1016/j.jalgebra.2012.02.011, J. Algebra 357 (2012), 61-68. (2012) Zbl1259.20008MR2905242DOI10.1016/j.jalgebra.2012.02.011
  15. Tong-Viet, H. P., 10.1007/s00605-011-0301-9, Monatsh. Math. 166 (2012), 559-577. (2012) Zbl1255.20006MR2925155DOI10.1007/s00605-011-0301-9
  16. Tong-Viet, H. P., 10.1016/j.jalgebra.2010.11.018, J. Algebra 334 (2011), 275-284. (2011) Zbl1246.20007MR2787664DOI10.1016/j.jalgebra.2010.11.018
  17. White, D. L., 10.1216/RMJ-2009-39-5-1713, Rocky Mt. J. Math. 39 (2009), 1713-1739. (2009) Zbl1180.20008MR2546661DOI10.1216/RMJ-2009-39-5-1713
  18. Xu, H., Chen, G., Yan, Y., 10.1080/00927872.2013.842242, Commun. Algebra 42 5374-5380 (2014). (2014) Zbl1297.20012MR3223645DOI10.1080/00927872.2013.842242

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.