A characterization of in terms of the number of character zeros.
Let be a finite group and a prime number. We prove that if is a finite group of order such that has an irreducible character of degree and we know that has no irreducible character such that , then is isomorphic to . As a consequence of our result we prove that is uniquely determined by the structure of its complex group algebra.
The set of invariant symmetric bilinear forms on irreducible modules over fields of characteristic zero for certain groups is studied. Results are obtained under the presence in a finite group of elements of order four whose square is central. In particular, we find that the relevant modules for the groups mentioned in the title always accept an invariant symmetric bilinear form under which the module admits an orthonormal basis.
Soient un groupe algébrique réductif connexe défini sur et l’endomorphisme de Frobenius correspondant. Soit un automorphisme rationnel quasi-central de . Nous construisons ci-dessous l’équivalent des représentations de Gelfand-Graev du groupe , lorsque est unipotent et lorsqu’il est semi-simple. Nous montrons de plus que ces représentations vérifient des propriétés semblables à celles vérifiées par les représentations de Gelfand-Graev dans le cas connexe en particulier par rapport aux...
Les foncteurs entre espaces vectoriels, ou représentations génériques des groupes linéaires d’après Kuhn, interviennent en topologie algébrique et en -théorie comme en théorie des représentations. Nous présentons ici une nouvelle méthode pour aborder les problèmes de finitude et la dimension de Krull dans ce contexte.Plus précisément, nous démontrons que, dans la catégorie des foncteurs entre espaces vectoriels sur , le produit tensoriel entre , où désigne le foncteur projectif , et un foncteur...