Some properties complementary to Brualdi-Li matrices
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 1, page 135-149
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Chuanlong, and Yong, Xuerong. "Some properties complementary to Brualdi-Li matrices." Czechoslovak Mathematical Journal 65.1 (2015): 135-149. <http://eudml.org/doc/270048>.
@article{Wang2015,
abstract = {In this paper we derive new properties complementary to an $2n \times 2n$ Brualdi-Li tournament matrix $B_\{2n\}$. We show that $B_\{2n\}$ has exactly one positive real eigenvalue and one negative real eigenvalue and, as a by-product, reprove that every Brualdi-Li matrix has distinct eigenvalues. We then bound the partial sums of the real parts and the imaginary parts of its eigenvalues. The inverse of $B_\{2n\}$ is also determined. Related results obtained in previous articles are proven to be corollaries.},
author = {Wang, Chuanlong, Yong, Xuerong},
journal = {Czechoslovak Mathematical Journal},
keywords = {tournament matrix; Brualdi-Li matrix; eigenvalue; Perron value; tournament matrix; Brualdi-Li matrix; eigenvalue; Perron value},
language = {eng},
number = {1},
pages = {135-149},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some properties complementary to Brualdi-Li matrices},
url = {http://eudml.org/doc/270048},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Wang, Chuanlong
AU - Yong, Xuerong
TI - Some properties complementary to Brualdi-Li matrices
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 135
EP - 149
AB - In this paper we derive new properties complementary to an $2n \times 2n$ Brualdi-Li tournament matrix $B_{2n}$. We show that $B_{2n}$ has exactly one positive real eigenvalue and one negative real eigenvalue and, as a by-product, reprove that every Brualdi-Li matrix has distinct eigenvalues. We then bound the partial sums of the real parts and the imaginary parts of its eigenvalues. The inverse of $B_{2n}$ is also determined. Related results obtained in previous articles are proven to be corollaries.
LA - eng
KW - tournament matrix; Brualdi-Li matrix; eigenvalue; Perron value; tournament matrix; Brualdi-Li matrix; eigenvalue; Perron value
UR - http://eudml.org/doc/270048
ER -
References
top- Brauer, A., Gentry, I. C., Some remarks on tournament matrices, Linear Algebra Appl. 5 (1972), 311-318. (1972) Zbl0246.15012MR0304206
- Brauer, A., Gentry, I. C., 10.1090/S0002-9904-1968-12079-8, Bull. Am. Math. Soc. 74 (1968), 1133-1135. (1968) Zbl0167.03002MR0232784DOI10.1090/S0002-9904-1968-12079-8
- Brualdi, R., Li, Q., Problem 31, Discrete Mathematics 43 (1983), 329-330. (1983)
- Davis, P. J., Circulant Matrices. Pure & Applied Mathematics, John Wiley & Sons New York (1979). (1979) MR0543191
- Friedland, S., Eigenvalues of almost skew symmetric matrices and tournament matrices, Combinatorial and Graph-Theoretical Problems in Linear Algebra; Proceedings of a workshop held at the University of Minnesota, USA, 1991; IMA Vol. Math. Appl. 50 Springer, New York (1993), 189-206 R. A. Brualdi et al. (1993) Zbl0789.15019MR1240964
- Gregory, D. A., Kirkland, S. J., Singular values of tournament matrices, Electron. J. Linear Algebra (electronic only) 5 (1999), 39-52. (1999) Zbl0915.05085MR1668927
- Gregory, D. A., Kirkland, S. J., Shader, B. L., Pick's inequality and tournaments, Linear Algebra Appl. 186 (1993), 15-36. (1993) Zbl0776.05072MR1217195
- Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities, Cambridge Mathematical Library Cambridge Univ. Press, Cambridge (1952). (1952) Zbl0047.05302MR0046395
- Hemasinha, R., Weaver, J. R., Kirkland, S. J., Stuart, J. L., Properties of the Brualdi-{L}i tournament matrix, Linear Algebra Appl. 361 (2003), 63-73. (2003) Zbl1017.05074MR1955553
- Horn, A., 10.2307/2372705, Am. J. Math. 76 (1954), 620-630. (1954) Zbl0055.24601MR0063336DOI10.2307/2372705
- Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press Cambridge (1991). (1991) Zbl0729.15001
- Kirkland, S., An upper bound on the Perron value of an almost regular tournament matrix, Linear Algebra Appl. 361 (2003), 7-22. (2003) Zbl1019.15004MR1955551
- Kirkland, S., A note on Perron vectors for almost regular tournament matrices, Linear Algebra Appl. 266 (1997), 43-47. (1997) Zbl0901.15011MR1473192
- Kirkland, S., 10.1016/0024-3795(95)00196-4, Linear Algebra Appl. 248 (1996), 233-240. (1996) Zbl0865.15014MR1416458DOI10.1016/0024-3795(95)00196-4
- Kirkland, S., On the minimum Perron value for an irreducible tournament matrix, Linear Algebra Appl. 244 (1996), 277-304. (1996) Zbl0860.15016MR1403286
- Kirkland, S., 10.1080/03081089108818111, Linear Multilinear Algebra 30 (1991), 261-274. (1991) Zbl0751.15009MR1129183DOI10.1080/03081089108818111
- Kirkland, S. J., Shader, B. L., Tournament matrices with extremal spectral properties, Linear Algebra Appl. 196 (1994), 1-17. (1994) Zbl0790.15021MR1273972
- Maybee, J. S., Pullman, N. J., 10.1080/03081089008818030, Linear Multilinear Algebra 28 (1990), 57-70. (1990) Zbl0714.05041MR1077735DOI10.1080/03081089008818030
- Mirsky, L., 10.1016/0022-247X(64)90009-5, J. Math. Anal. Appl. 9 (1964), 99-118. (1964) Zbl0133.26202MR0163918DOI10.1016/0022-247X(64)90009-5
- Moon, J. W., Topics on Tournaments, Holt, Rinehart and Winston New York (1968). (1968) Zbl0191.22701MR0256919
- Moon, J. W., Pullman, N. J., 10.1137/1012081, SIAM Rev. 12 (1970), 384-399. (1970) Zbl0198.03804MR0272644DOI10.1137/1012081
- Pólya, G., Szegő, G., Problems and Theorems in Analysis. II: Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry, Classics in Mathematics Springer, Berlin (1998). (1998) Zbl1024.00003MR1492448
- Shader, B. L., On tournament matrices, Linear Algebra Appl. 162-164 (1992), 335-368. (1992) Zbl0744.15015MR1148408
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.