Stability of nonlinear h -difference systems with n fractional orders

Małgorzata Wyrwas; Ewa Pawluszewicz; Ewa Girejko

Kybernetika (2015)

  • Volume: 51, Issue: 1, page 112-136
  • ISSN: 0023-5954

Abstract

top
In the paper we study the subject of stability of systems with h -differences of Caputo-, Riemann-Liouville- and Grünwald-Letnikov-type with n fractional orders. The equivalent descriptions of fractional h -difference systems are presented. The sufficient conditions for asymptotic stability are given. Moreover, the Lyapunov direct method is used to analyze the stability of the considered systems with n -orders.

How to cite

top

Wyrwas, Małgorzata, Pawluszewicz, Ewa, and Girejko, Ewa. "Stability of nonlinear $h$-difference systems with $n$ fractional orders." Kybernetika 51.1 (2015): 112-136. <http://eudml.org/doc/270056>.

@article{Wyrwas2015,
abstract = {In the paper we study the subject of stability of systems with $h$-differences of Caputo-, Riemann-Liouville- and Grünwald-Letnikov-type with $n$ fractional orders. The equivalent descriptions of fractional $h$-difference systems are presented. The sufficient conditions for asymptotic stability are given. Moreover, the Lyapunov direct method is used to analyze the stability of the considered systems with $n$-orders.},
author = {Wyrwas, Małgorzata, Pawluszewicz, Ewa, Girejko, Ewa},
journal = {Kybernetika},
keywords = {fractional difference systems; difference operators; stability; fractional difference systems; difference operators; asymptotic stability; Lyapunov direct method},
language = {eng},
number = {1},
pages = {112-136},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stability of nonlinear $h$-difference systems with $n$ fractional orders},
url = {http://eudml.org/doc/270056},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Wyrwas, Małgorzata
AU - Pawluszewicz, Ewa
AU - Girejko, Ewa
TI - Stability of nonlinear $h$-difference systems with $n$ fractional orders
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 1
SP - 112
EP - 136
AB - In the paper we study the subject of stability of systems with $h$-differences of Caputo-, Riemann-Liouville- and Grünwald-Letnikov-type with $n$ fractional orders. The equivalent descriptions of fractional $h$-difference systems are presented. The sufficient conditions for asymptotic stability are given. Moreover, the Lyapunov direct method is used to analyze the stability of the considered systems with $n$-orders.
LA - eng
KW - fractional difference systems; difference operators; stability; fractional difference systems; difference operators; asymptotic stability; Lyapunov direct method
UR - http://eudml.org/doc/270056
ER -

References

top
  1. Abdeljawad, T., Baleanu, D., Fractional differences and integration by parts., J. Computat. Analysis Appl. 13 (2011), 574-582. Zbl1225.39008MR2752428
  2. Atıcı, F. M., Eloe, P. W., A transform method in discrete fractional calculus., Int. J. Differ, Equ. 2 (2007), 165-176. MR2493595
  3. Atıcı, F. M., Eloe, P. W., 10.14232/ejqtde.2009.4.3, Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I(3) (2009), 1-12. Zbl1189.39004MR2558828DOI10.14232/ejqtde.2009.4.3
  4. Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M., 10.1016/j.sigpro.2010.05.001, Signal Processing 91 (2011), 513-524. Zbl1203.94022DOI10.1016/j.sigpro.2010.05.001
  5. Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M., 10.3934/dcds.2011.29.417, Discrete Contin. Dyn. Syst. 29 (2011), 417-437. Zbl1209.49020MR2728463DOI10.3934/dcds.2011.29.417
  6. Busłowicz, M., Stability of continuous-time linear systems described by state equation with fractional commensurate orders of derivatives., Przegląd Elektroniczby (Electrical Review) 88 (2012), 17-20. 
  7. Chen, F., Luo, X., Zhou, Y., 10.1155/2011/713201, Adv. Differ. Equ. 2011 (2011), 12 pages. Zbl1207.39012MR2747089DOI10.1155/2011/713201
  8. Chen, F., 10.1155/2011/713201, Electr. J. Qual. Theory Differ. Equ. 39 (2011), 1-18. MR2805759DOI10.1155/2011/713201
  9. Chen, F., Liu, Z., 10.1155/2012/879657, J. Appl. Math. 2012 (2012), 14 pages. Zbl1235.39008MR2898069DOI10.1155/2012/879657
  10. Ferreira, R. A. C., Torres, D. F. M., 10.2298/aadm110131002f, Appl. Anal. Discrete Math. 5 (2011), 110-121. Zbl1289.39007MR2809039DOI10.2298/aadm110131002f
  11. Girejko, E., Mozyrska, D., Semi-linear fractional systems with Caputo type multi-step differences., In: Symposium on Fractional Signals and Systems, Instituto Superior de Engenharia de Coimbra, Coimbra, November 2011, pp. 79-88. 
  12. Guermah, S., Djennoune, S., Bettayeb, M., Asymptotic stability and practical stability of linear discrete-time fractional order systems., In: 3rd IFAC Workshop on Fractional Differentiation and its Applications, Ankara 2008. 
  13. Holm, M. T., The Theory of Discrete Fractional Calculus: Development and Application., PhD. Thesis, University of Nebraska - Lincoln, 2011. MR2873503
  14. Hu, J. B., Lu, G. P., Zhang, S. B., Zhao, L. D., 10.1016/j.cnsns.2014.05.013, Commun. Nonlinear Sci. Numer. Simul. 20 (2014), 905-913. MR3255642DOI10.1016/j.cnsns.2014.05.013
  15. Jarad, F., Abdeljawad, T., Baleanu, D., Biçen, K., 10.1155/2012/476581, Abstr. Appl. Anal. 2012 (2012), 9 pages. Zbl1235.93206MR2889092DOI10.1155/2012/476581
  16. Kaczorek, T., 10.1007/978-3-642-20502-6, Springer-Verlag, Berlin, Heidelberg 2011. Zbl1221.93002MR2798773DOI10.1007/978-3-642-20502-6
  17. Kaczorek, T., Practical stability of positive fractional discrete-time linear systems., Bull. Pol. Acad. Sci. Techn. Sci. 56 (2008), 313-317. Zbl1167.93019
  18. Kaczorek, T., 10.1108/03684920910976826, Kybernetes 38 (2009), 1059-1078. MR2597223DOI10.1108/03684920910976826
  19. Kaczorek, T., 10.2478/v10006-009-0008-4, Int. J. Appl. Math. Comput. Sci. 19 (2009), 89-93. Zbl1169.93004MR2515026DOI10.2478/v10006-009-0008-4
  20. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)80001-0, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam 2006. Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)80001-0
  21. Li, C. P., Zhang, F. R., 10.1140/epjst/e2011-01379-1, Eur. Phys. J. 193 (2011), 27-47. DOI10.1140/epjst/e2011-01379-1
  22. Li, Y., Chen, Y. Q., Podlubny, I., 10.1140/epjst/e2011-01379-1, Automatica 45 (2009), 1965-1969. Zbl1185.93062MR2879525DOI10.1140/epjst/e2011-01379-1
  23. Li, Y., Chen, Y. Q., Podlubny, I., 10.1016/j.camwa.2009.08.019, Comput. Math. Appl. 59 (2010), 1810-1821. Zbl1189.34015MR2595955DOI10.1016/j.camwa.2009.08.019
  24. Margarita, R., Rogosin, S. V., Machado, J. A. Tenreiro, Trujillo, J. J., 10.1155/2013/356215, Math. Probl. Engrg. 2013 (2013), 14 pages. MR3062648DOI10.1155/2013/356215
  25. Miller, K. S., Ross, B., Fractional difference calculus., In: Proc. International Symposium on Univalent Functions, Fractional Calculus and their Applications, Nihon University, Koriyama 1988, pp. 139-152. Zbl0693.39002MR1199147
  26. Mozyrska, D., Girejko, E., 10.1007/978-3-0348-0516-2_14, In: Advances in Harmonic Analysis and Operator Theory: The Stefan Samko Anniversary Volume (A. Almeida, L. Castro, F.-O. Speck, eds.), Springer 2013, pp. 253-267. MR3060418DOI10.1007/978-3-0348-0516-2_14
  27. Mozyrska, D., Girejko, E., Wyrwas, M., 10.1007/978-3-319-00933-9_17, In: Advances in the Theory and Applications of non-integer Order Systems (W. Mitkowski, J. Kacprzyk, J. Baranowski, eds.), Lect. Notes Electr. Engrg. 257, Springer International Publishing, Switzerland 2013, pp. 191-197. MR3289943DOI10.1007/978-3-319-00933-9_17
  28. Mozyrska, D., Pawluszewicz, E., 10.2478/bpasts-2013-0024, Bull. Pol. Acad. Sci. Techn. Sci. 61 (2013), 251-256. DOI10.2478/bpasts-2013-0024
  29. Ostalczyk, P., Equivalent descriptions of a discrete time fractional order linear system and its stability domains., Int. J. Appl. Math. Comput. Sci. 22 (2012), 533-538. Zbl1302.93140MR3025260
  30. Petráš, I., Stability of fractional-order systems with rational orders: a survey., Fract. Calc. Appl. Anal. 12 (2009), 269-298. Zbl1182.26017MR2572711
  31. Petráš, I., 10.1007/978-3-642-18101-6, Springer, Dordrecht 2011. DOI10.1007/978-3-642-18101-6
  32. Podlubny, I., Fractional Differential Equations. Mathematics in Sciences and Engineering., Academic Press, San Diego 1999. MR1658022
  33. Tavazoei, M. S., Haeri, M., 10.1016/j.matcom.2008.07.003, Math. Comput. Simul. 79 (2009), 1566-1576. Zbl1168.34036MR2488105DOI10.1016/j.matcom.2008.07.003
  34. Trigeassou, J. C., Maamri, N., Sabatier, J., Oustaloup, A., 10.1016/j.sigpro.2010.04.024, Signal Process. 91 (2011), 437-445. Zbl1203.94059DOI10.1016/j.sigpro.2010.04.024
  35. Wyrwas, M., Girejko, E., Mozyrska, D., Pawluszewicz, E., 10.1007/978-3-319-00933-9_4, In: Advances in the Theory and Applications of Non-integer Order Systems (W. Mitkowski, J. Kacprzyk, and J. Baranowski, eds.), Lect. Notes Electr. Engrg. 257, Springer International Publishing, Switzerland 2013, pp. 41-52. Zbl1271.93129MR3289930DOI10.1007/978-3-319-00933-9_4
  36. Zhao, L. D., Hu, J. B., Fang, J. A., Zhang, W. B., 10.1007/s11071-012-0469-0, Nonlinear Dynamics 70 (2012), 475-479. Zbl1267.34013MR2991287DOI10.1007/s11071-012-0469-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.