Stability of nonlinear -difference systems with fractional orders
Małgorzata Wyrwas; Ewa Pawluszewicz; Ewa Girejko
Kybernetika (2015)
- Volume: 51, Issue: 1, page 112-136
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topWyrwas, Małgorzata, Pawluszewicz, Ewa, and Girejko, Ewa. "Stability of nonlinear $h$-difference systems with $n$ fractional orders." Kybernetika 51.1 (2015): 112-136. <http://eudml.org/doc/270056>.
@article{Wyrwas2015,
abstract = {In the paper we study the subject of stability of systems with $h$-differences of Caputo-, Riemann-Liouville- and Grünwald-Letnikov-type with $n$ fractional orders. The equivalent descriptions of fractional $h$-difference systems are presented. The sufficient conditions for asymptotic stability are given. Moreover, the Lyapunov direct method is used to analyze the stability of the considered systems with $n$-orders.},
author = {Wyrwas, Małgorzata, Pawluszewicz, Ewa, Girejko, Ewa},
journal = {Kybernetika},
keywords = {fractional difference systems; difference operators; stability; fractional difference systems; difference operators; asymptotic stability; Lyapunov direct method},
language = {eng},
number = {1},
pages = {112-136},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stability of nonlinear $h$-difference systems with $n$ fractional orders},
url = {http://eudml.org/doc/270056},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Wyrwas, Małgorzata
AU - Pawluszewicz, Ewa
AU - Girejko, Ewa
TI - Stability of nonlinear $h$-difference systems with $n$ fractional orders
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 1
SP - 112
EP - 136
AB - In the paper we study the subject of stability of systems with $h$-differences of Caputo-, Riemann-Liouville- and Grünwald-Letnikov-type with $n$ fractional orders. The equivalent descriptions of fractional $h$-difference systems are presented. The sufficient conditions for asymptotic stability are given. Moreover, the Lyapunov direct method is used to analyze the stability of the considered systems with $n$-orders.
LA - eng
KW - fractional difference systems; difference operators; stability; fractional difference systems; difference operators; asymptotic stability; Lyapunov direct method
UR - http://eudml.org/doc/270056
ER -
References
top- Abdeljawad, T., Baleanu, D., Fractional differences and integration by parts., J. Computat. Analysis Appl. 13 (2011), 574-582. Zbl1225.39008MR2752428
- Atıcı, F. M., Eloe, P. W., A transform method in discrete fractional calculus., Int. J. Differ, Equ. 2 (2007), 165-176. MR2493595
- Atıcı, F. M., Eloe, P. W., 10.14232/ejqtde.2009.4.3, Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I(3) (2009), 1-12. Zbl1189.39004MR2558828DOI10.14232/ejqtde.2009.4.3
- Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M., 10.1016/j.sigpro.2010.05.001, Signal Processing 91 (2011), 513-524. Zbl1203.94022DOI10.1016/j.sigpro.2010.05.001
- Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M., 10.3934/dcds.2011.29.417, Discrete Contin. Dyn. Syst. 29 (2011), 417-437. Zbl1209.49020MR2728463DOI10.3934/dcds.2011.29.417
- Busłowicz, M., Stability of continuous-time linear systems described by state equation with fractional commensurate orders of derivatives., Przegląd Elektroniczby (Electrical Review) 88 (2012), 17-20.
- Chen, F., Luo, X., Zhou, Y., 10.1155/2011/713201, Adv. Differ. Equ. 2011 (2011), 12 pages. Zbl1207.39012MR2747089DOI10.1155/2011/713201
- Chen, F., 10.1155/2011/713201, Electr. J. Qual. Theory Differ. Equ. 39 (2011), 1-18. MR2805759DOI10.1155/2011/713201
- Chen, F., Liu, Z., 10.1155/2012/879657, J. Appl. Math. 2012 (2012), 14 pages. Zbl1235.39008MR2898069DOI10.1155/2012/879657
- Ferreira, R. A. C., Torres, D. F. M., 10.2298/aadm110131002f, Appl. Anal. Discrete Math. 5 (2011), 110-121. Zbl1289.39007MR2809039DOI10.2298/aadm110131002f
- Girejko, E., Mozyrska, D., Semi-linear fractional systems with Caputo type multi-step differences., In: Symposium on Fractional Signals and Systems, Instituto Superior de Engenharia de Coimbra, Coimbra, November 2011, pp. 79-88.
- Guermah, S., Djennoune, S., Bettayeb, M., Asymptotic stability and practical stability of linear discrete-time fractional order systems., In: 3rd IFAC Workshop on Fractional Differentiation and its Applications, Ankara 2008.
- Holm, M. T., The Theory of Discrete Fractional Calculus: Development and Application., PhD. Thesis, University of Nebraska - Lincoln, 2011. MR2873503
- Hu, J. B., Lu, G. P., Zhang, S. B., Zhao, L. D., 10.1016/j.cnsns.2014.05.013, Commun. Nonlinear Sci. Numer. Simul. 20 (2014), 905-913. MR3255642DOI10.1016/j.cnsns.2014.05.013
- Jarad, F., Abdeljawad, T., Baleanu, D., Biçen, K., 10.1155/2012/476581, Abstr. Appl. Anal. 2012 (2012), 9 pages. Zbl1235.93206MR2889092DOI10.1155/2012/476581
- Kaczorek, T., 10.1007/978-3-642-20502-6, Springer-Verlag, Berlin, Heidelberg 2011. Zbl1221.93002MR2798773DOI10.1007/978-3-642-20502-6
- Kaczorek, T., Practical stability of positive fractional discrete-time linear systems., Bull. Pol. Acad. Sci. Techn. Sci. 56 (2008), 313-317. Zbl1167.93019
- Kaczorek, T., 10.1108/03684920910976826, Kybernetes 38 (2009), 1059-1078. MR2597223DOI10.1108/03684920910976826
- Kaczorek, T., 10.2478/v10006-009-0008-4, Int. J. Appl. Math. Comput. Sci. 19 (2009), 89-93. Zbl1169.93004MR2515026DOI10.2478/v10006-009-0008-4
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)80001-0, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam 2006. Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)80001-0
- Li, C. P., Zhang, F. R., 10.1140/epjst/e2011-01379-1, Eur. Phys. J. 193 (2011), 27-47. DOI10.1140/epjst/e2011-01379-1
- Li, Y., Chen, Y. Q., Podlubny, I., 10.1140/epjst/e2011-01379-1, Automatica 45 (2009), 1965-1969. Zbl1185.93062MR2879525DOI10.1140/epjst/e2011-01379-1
- Li, Y., Chen, Y. Q., Podlubny, I., 10.1016/j.camwa.2009.08.019, Comput. Math. Appl. 59 (2010), 1810-1821. Zbl1189.34015MR2595955DOI10.1016/j.camwa.2009.08.019
- Margarita, R., Rogosin, S. V., Machado, J. A. Tenreiro, Trujillo, J. J., 10.1155/2013/356215, Math. Probl. Engrg. 2013 (2013), 14 pages. MR3062648DOI10.1155/2013/356215
- Miller, K. S., Ross, B., Fractional difference calculus., In: Proc. International Symposium on Univalent Functions, Fractional Calculus and their Applications, Nihon University, Koriyama 1988, pp. 139-152. Zbl0693.39002MR1199147
- Mozyrska, D., Girejko, E., 10.1007/978-3-0348-0516-2_14, In: Advances in Harmonic Analysis and Operator Theory: The Stefan Samko Anniversary Volume (A. Almeida, L. Castro, F.-O. Speck, eds.), Springer 2013, pp. 253-267. MR3060418DOI10.1007/978-3-0348-0516-2_14
- Mozyrska, D., Girejko, E., Wyrwas, M., 10.1007/978-3-319-00933-9_17, In: Advances in the Theory and Applications of non-integer Order Systems (W. Mitkowski, J. Kacprzyk, J. Baranowski, eds.), Lect. Notes Electr. Engrg. 257, Springer International Publishing, Switzerland 2013, pp. 191-197. MR3289943DOI10.1007/978-3-319-00933-9_17
- Mozyrska, D., Pawluszewicz, E., 10.2478/bpasts-2013-0024, Bull. Pol. Acad. Sci. Techn. Sci. 61 (2013), 251-256. DOI10.2478/bpasts-2013-0024
- Ostalczyk, P., Equivalent descriptions of a discrete time fractional order linear system and its stability domains., Int. J. Appl. Math. Comput. Sci. 22 (2012), 533-538. Zbl1302.93140MR3025260
- Petráš, I., Stability of fractional-order systems with rational orders: a survey., Fract. Calc. Appl. Anal. 12 (2009), 269-298. Zbl1182.26017MR2572711
- Petráš, I., 10.1007/978-3-642-18101-6, Springer, Dordrecht 2011. DOI10.1007/978-3-642-18101-6
- Podlubny, I., Fractional Differential Equations. Mathematics in Sciences and Engineering., Academic Press, San Diego 1999. MR1658022
- Tavazoei, M. S., Haeri, M., 10.1016/j.matcom.2008.07.003, Math. Comput. Simul. 79 (2009), 1566-1576. Zbl1168.34036MR2488105DOI10.1016/j.matcom.2008.07.003
- Trigeassou, J. C., Maamri, N., Sabatier, J., Oustaloup, A., 10.1016/j.sigpro.2010.04.024, Signal Process. 91 (2011), 437-445. Zbl1203.94059DOI10.1016/j.sigpro.2010.04.024
- Wyrwas, M., Girejko, E., Mozyrska, D., Pawluszewicz, E., 10.1007/978-3-319-00933-9_4, In: Advances in the Theory and Applications of Non-integer Order Systems (W. Mitkowski, J. Kacprzyk, and J. Baranowski, eds.), Lect. Notes Electr. Engrg. 257, Springer International Publishing, Switzerland 2013, pp. 41-52. Zbl1271.93129MR3289930DOI10.1007/978-3-319-00933-9_4
- Zhao, L. D., Hu, J. B., Fang, J. A., Zhang, W. B., 10.1007/s11071-012-0469-0, Nonlinear Dynamics 70 (2012), 475-479. Zbl1267.34013MR2991287DOI10.1007/s11071-012-0469-0
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.