### ${\mathscr{H}}_{\infty}$ constant gain state feedback stabilization of stochastic hybrid systems with Wiener process.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

This paper is concerned with the problem of designing a robust modified repetitive-control system with a dynamic outputfeedback controller for a class of strictly proper plants. Employing the continuous lifting technique, a continuous-discrete two-dimensional (2D) model is built that accurately describes the features of repetitive control. The 2D control input contains the direct sum of the effects of control and learning, which allows us to adjust control and learning preferentially. The singular-value...

As an object of course control, the ship is characterised by a nonlinear function describing static manoeuvring characteristics that reflect the steady-state relation between the rudder deflection and the rate of turn of the hull. One of the methods which can be used for designing a nonlinear ship course controller is the backstepping method. It is used here for designing two configurations of nonlinear controllers, which are then applied to ship course control. The parameters of the obtained nonlinear...

Given a square matrix A, a Brauer’s theorem [Brauer A., Limits for the characteristic roots of a matrix. IV. Applications to stochastic matrices, Duke Math. J., 1952, 19(1), 75–91] shows how to modify one single eigenvalue of A via a rank-one perturbation without changing any of the remaining eigenvalues. Older and newer results can be considered in the framework of the above theorem. In this paper, we present its application to stabilization of control systems, including the case when the system...

First, we consider a semilinear hyperbolic equation with a locally distributed damping in a bounded domain. The damping is located on a neighborhood of a suitable portion of the boundary. Using a Carleman estimate [Duyckaerts, Zhang and Zuazua, Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear); Fu, Yong and Zhang, SIAM J. Contr. Opt. 46 (2007) 1578–1614], we prove that the energy of this system decays exponentially to zero as the time variable goes to infinity. Second, relying on another Carleman...

First, we consider a semilinear hyperbolic equation with a locally distributed damping in a bounded domain. The damping is located on a neighborhood of a suitable portion of the boundary. Using a Carleman estimate [Duyckaerts, Zhang and Zuazua, Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear); Fu, Yong and Zhang, SIAM J. Contr. Opt.46 (2007) 1578–1614], we prove that the energy of this system decays exponentially to zero as the time variable goes to infinity. Second, relying on another Carleman...

The problem of asymptotic stabilization for a class of differential inclusions is considered. The problem of choosing the Lyapunov functions from the parametric class of polynomials for differential inclusions is reduced to that of searching saddle points of a suitable function. A numerical algorithm is used for this purpose. All the results thus obtained can be extended to cover the discrete systems described by difference inclusions.

The article discusses an optimal Linear Quadratic (LQ) deterministic control problem when the Youla–Kučera parametrisation of controller is used. We provide a computational procedure for computing a deterministic optimal single-input single-output (SISO) controller from any stabilising controller. This approach allows us to calculate a new optimal LQ deterministic controller from a previous one when the plant has changed. The design based on the Youla –Kučera parametrisation approach is compared...

We consider chained systems that model various systems of mechanical or biological origin. It is known according to Brockett that this class of systems, which are controllable, is not stabilizable by continuous stationary feedback (i.e. independent of time). Various approaches have been proposed to remedy this problem, especially instationary or discontinuous feedbacks. Here, we look at another stabilization strategy (by continuous stationary or...

In this paper the exact decoupling problem of signals that are accessible for measurement is investigated. Exploiting the tools and the procedures of the geometric approach, the structure of a feedforward compensator is derived that, cascaded to a linear dynamical system and taking the measurable signal as input, provides the control law that solves the decoupling problem and ensures the internal stability of the overall system.

In this paper the control of robotic manipulation is investigated. Manipulation system analysis and control are approached in a general framework. The geometric aspect of manipulation system dynamics is strongly emphasized by using the well developed techniques of geometric multivariable control theory. The focus is on the (functional) control of the crucial outputs in robotic manipulation, namely the reachable internal forces and the rigid-body object motions. A geometric control procedure is outlined...

This paper deals with the problem of controlling contact forces in robotic manipulators with general kinematics. The main focus is on control of grasping contact forces exerted on the manipulated object. A visco-elastic model for contacts is adopted. The robustness of the decoupling controller with respect to the uncertainties affecting system parameters is investigated. Sufficient conditions for the invariance of decoupling action under perturbations on the contact stiffness and damping parameters...

We provide a framework for hierarchical specification called Hierarchical Decision Process Petri Nets (HDPPNs). It is an extension of Decision Process Petri Nets (DPPNs) including a hierarchical decomposition process that generates less complex nets with equivalent behavior. As a result, the complexity of the analysis for a sophisticated system is drastically reduced. In the HDPPN, we represent the mark-dynamic and trajectory-dynamic properties of a DPPN. Within the framework of the mark-dynamic...

The paper presents a method to determine a Lyapunov functional for a linear time-invariant system with an interval timevarying delay. The functional is constructed for the system with a time-varying delay with a given time derivative, which is calculated on the system trajectory. The presented method gives analytical formulas for the coefficients of the Lyapunov functional.