Riemannian foliations with parallel or harmonic basic forms
Fida El Chami; Georges Habib; Roger Nakad
Archivum Mathematicum (2015)
- Volume: 051, Issue: 1, page 51-65
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topEl Chami, Fida, Habib, Georges, and Nakad, Roger. "Riemannian foliations with parallel or harmonic basic forms." Archivum Mathematicum 051.1 (2015): 51-65. <http://eudml.org/doc/270057>.
@article{ElChami2015,
abstract = {In this paper, we consider a Riemannian foliation that admits a nontrivial parallel or harmonic basic form. We estimate the norm of the O’Neill tensor in terms of the curvature data of the whole manifold. Some examples are then given.},
author = {El Chami, Fida, Habib, Georges, Nakad, Roger},
journal = {Archivum Mathematicum},
keywords = {Riemannian foliation; parallel and harmonic basic forms; O’Neill tensor; Riemannian foliation; parallel and harmonic basic forms; O'Neill tensor},
language = {eng},
number = {1},
pages = {51-65},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Riemannian foliations with parallel or harmonic basic forms},
url = {http://eudml.org/doc/270057},
volume = {051},
year = {2015},
}
TY - JOUR
AU - El Chami, Fida
AU - Habib, Georges
AU - Nakad, Roger
TI - Riemannian foliations with parallel or harmonic basic forms
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 1
SP - 51
EP - 65
AB - In this paper, we consider a Riemannian foliation that admits a nontrivial parallel or harmonic basic form. We estimate the norm of the O’Neill tensor in terms of the curvature data of the whole manifold. Some examples are then given.
LA - eng
KW - Riemannian foliation; parallel and harmonic basic forms; O’Neill tensor; Riemannian foliation; parallel and harmonic basic forms; O'Neill tensor
UR - http://eudml.org/doc/270057
ER -
References
top- El Soufi, A., Petit, R., Géométrie des sous-variétés admettant une structure kählérienne ou un second nombre de Betti non nul, Actes de Congrès de Géométrie d'Oran, 1989, p. 17 pp. (1989)
- Gromoll, D., Grove, K., The low dimensional metric foliations of Euclidean spheres, J. Differential Geom. 28 (1988), 143–156. (1988) Zbl0683.53030MR0950559
- Grosjean, J.–F., 10.1016/j.geomphys.2003.10.009, J. Geom. Phys. 51 (2004), 211–228. (2004) Zbl1074.53050MR2078671DOI10.1016/j.geomphys.2003.10.009
- Habib, G., Richardson, K, 10.1007/s12220-011-9289-6, J. Geom. Anal. 23 (2013), 1314–1342. (2013) Zbl1276.53031MR3078356DOI10.1007/s12220-011-9289-6
- Hobum, K., Tondeur, P., 10.1007/BF02567656, Manuscripta Math. 74 (1992), 39–45. (1992) Zbl0763.53036MR1141775DOI10.1007/BF02567656
- Leung, P.F., 10.1007/BF01187216, Math. Z. 183 (1983), 75–86. (1983) Zbl0491.53045MR0701359DOI10.1007/BF01187216
- O’Neill, B., 10.1307/mmj/1028999604, Michigan Math. J. 13 (1966), 459–469. (1966) MR0200865DOI10.1307/mmj/1028999604
- Ranjan, A., On a remark of O’Neill, Duke Math. J. 53 (1981), 363–373. (1981) MR0835797
- Reinhart, B., 10.2307/1970097, Ann. of Math. (2) 69 (1959), 119–132. (1959) Zbl0122.16604MR0107279DOI10.2307/1970097
- Tondeur, P., Geometry of Foliations, Birkhäuser, Boston, 1997. (1997) Zbl0905.53002MR1456994
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.