Riemannian foliations with parallel or harmonic basic forms

Fida El Chami; Georges Habib; Roger Nakad

Archivum Mathematicum (2015)

  • Volume: 051, Issue: 1, page 51-65
  • ISSN: 0044-8753

Abstract

top
In this paper, we consider a Riemannian foliation that admits a nontrivial parallel or harmonic basic form. We estimate the norm of the O’Neill tensor in terms of the curvature data of the whole manifold. Some examples are then given.

How to cite

top

El Chami, Fida, Habib, Georges, and Nakad, Roger. "Riemannian foliations with parallel or harmonic basic forms." Archivum Mathematicum 051.1 (2015): 51-65. <http://eudml.org/doc/270057>.

@article{ElChami2015,
abstract = {In this paper, we consider a Riemannian foliation that admits a nontrivial parallel or harmonic basic form. We estimate the norm of the O’Neill tensor in terms of the curvature data of the whole manifold. Some examples are then given.},
author = {El Chami, Fida, Habib, Georges, Nakad, Roger},
journal = {Archivum Mathematicum},
keywords = {Riemannian foliation; parallel and harmonic basic forms; O’Neill tensor; Riemannian foliation; parallel and harmonic basic forms; O'Neill tensor},
language = {eng},
number = {1},
pages = {51-65},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Riemannian foliations with parallel or harmonic basic forms},
url = {http://eudml.org/doc/270057},
volume = {051},
year = {2015},
}

TY - JOUR
AU - El Chami, Fida
AU - Habib, Georges
AU - Nakad, Roger
TI - Riemannian foliations with parallel or harmonic basic forms
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 1
SP - 51
EP - 65
AB - In this paper, we consider a Riemannian foliation that admits a nontrivial parallel or harmonic basic form. We estimate the norm of the O’Neill tensor in terms of the curvature data of the whole manifold. Some examples are then given.
LA - eng
KW - Riemannian foliation; parallel and harmonic basic forms; O’Neill tensor; Riemannian foliation; parallel and harmonic basic forms; O'Neill tensor
UR - http://eudml.org/doc/270057
ER -

References

top
  1. El Soufi, A., Petit, R., Géométrie des sous-variétés admettant une structure kählérienne ou un second nombre de Betti non nul, Actes de Congrès de Géométrie d'Oran, 1989, p. 17 pp. (1989) 
  2. Gromoll, D., Grove, K., The low dimensional metric foliations of Euclidean spheres, J. Differential Geom. 28 (1988), 143–156. (1988) Zbl0683.53030MR0950559
  3. Grosjean, J.–F., 10.1016/j.geomphys.2003.10.009, J. Geom. Phys. 51 (2004), 211–228. (2004) Zbl1074.53050MR2078671DOI10.1016/j.geomphys.2003.10.009
  4. Habib, G., Richardson, K, 10.1007/s12220-011-9289-6, J. Geom. Anal. 23 (2013), 1314–1342. (2013) Zbl1276.53031MR3078356DOI10.1007/s12220-011-9289-6
  5. Hobum, K., Tondeur, P., 10.1007/BF02567656, Manuscripta Math. 74 (1992), 39–45. (1992) Zbl0763.53036MR1141775DOI10.1007/BF02567656
  6. Leung, P.F., 10.1007/BF01187216, Math. Z. 183 (1983), 75–86. (1983) Zbl0491.53045MR0701359DOI10.1007/BF01187216
  7. O’Neill, B., 10.1307/mmj/1028999604, Michigan Math. J. 13 (1966), 459–469. (1966) MR0200865DOI10.1307/mmj/1028999604
  8. Ranjan, A., On a remark of O’Neill, Duke Math. J. 53 (1981), 363–373. (1981) MR0835797
  9. Reinhart, B., 10.2307/1970097, Ann. of Math. (2) 69 (1959), 119–132. (1959) Zbl0122.16604MR0107279DOI10.2307/1970097
  10. Tondeur, P., Geometry of Foliations, Birkhäuser, Boston, 1997. (1997) Zbl0905.53002MR1456994

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.