Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of L α

Misiewicz Jolanta K.

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1996

Abstract

top
CONTENTSI. Introduction..........................................................................................................5II. Pseudo-isotropic random vectors........................................................................9  II.1. Symmetric stable vectors................................................................................9  II.2. Pseudo-isotropic random vectors..................................................................15  II.3. Elliptically contoured vectors..........................................................................23  II.4. α-symmetric random vectors..........................................................................27  II.5. Substable random vectors.............................................................................32III. Exchangeability and pseudo-isotropy.................................................................35  III.1. Pseudo-isotropic exchangeable sequences.................................................35  III.2. Schoenberg-type theorems..........................................................................40  III.3. Some generalizations...................................................................................43IV. Stable and substable stochastic processes.....................................................45  IV.1. Gaussian processes and Reproducing Kernel Hilbert Spaces....................45  IV.2. Elliptically contoured processes..................................................................47  IV.3. Symmetric stable stochastic processes......................................................50  IV.4. Spectral representation of symmetric stable processes.............................56  IV.5. Substable and pseudo-isotropic stochastic processes...............................59  IV.6. L α -dependent stochastic integrals.......................................................62  IV.7. Random limit theorems...............................................................................63V. Infinite divisibility of substable stochastic processes..........................................64  V.1. Infinitely divisible distributions. Lévy measures............................................66  V.2. Approximative logarithm................................................................................68  V.3. Infinite divisibility of substable random vectors..............................................73  V.4. Infinite divisibility of substable processes......................................................77References...........................................................................................................80Index......................................................................................................................901991 Mathematics Subject Classification: Primary 46A15, 60B11; Secondary 60G07, 46B20, 60E07, 60K99.

How to cite

top

Misiewicz Jolanta K.. Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of $L_α$. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1996. <http://eudml.org/doc/270064>.

@book{MisiewiczJolantaK1996,
abstract = {CONTENTSI. Introduction..........................................................................................................5II. Pseudo-isotropic random vectors........................................................................9  II.1. Symmetric stable vectors................................................................................9  II.2. Pseudo-isotropic random vectors..................................................................15  II.3. Elliptically contoured vectors..........................................................................23  II.4. α-symmetric random vectors..........................................................................27  II.5. Substable random vectors.............................................................................32III. Exchangeability and pseudo-isotropy.................................................................35  III.1. Pseudo-isotropic exchangeable sequences.................................................35  III.2. Schoenberg-type theorems..........................................................................40  III.3. Some generalizations...................................................................................43IV. Stable and substable stochastic processes.....................................................45  IV.1. Gaussian processes and Reproducing Kernel Hilbert Spaces....................45  IV.2. Elliptically contoured processes..................................................................47  IV.3. Symmetric stable stochastic processes......................................................50  IV.4. Spectral representation of symmetric stable processes.............................56  IV.5. Substable and pseudo-isotropic stochastic processes...............................59  IV.6. $L_α $-dependent stochastic integrals.......................................................62  IV.7. Random limit theorems...............................................................................63V. Infinite divisibility of substable stochastic processes..........................................64  V.1. Infinitely divisible distributions. Lévy measures............................................66  V.2. Approximative logarithm................................................................................68  V.3. Infinite divisibility of substable random vectors..............................................73  V.4. Infinite divisibility of substable processes......................................................77References...........................................................................................................80Index......................................................................................................................901991 Mathematics Subject Classification: Primary 46A15, 60B11; Secondary 60G07, 46B20, 60E07, 60K99.},
author = {Misiewicz Jolanta K.},
keywords = {spherically isotropic measures; elliptically isometric measures; geometry of linear spaces; stochastic processes},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of $L_α$},
url = {http://eudml.org/doc/270064},
year = {1996},
}

TY - BOOK
AU - Misiewicz Jolanta K.
TI - Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of $L_α$
PY - 1996
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSI. Introduction..........................................................................................................5II. Pseudo-isotropic random vectors........................................................................9  II.1. Symmetric stable vectors................................................................................9  II.2. Pseudo-isotropic random vectors..................................................................15  II.3. Elliptically contoured vectors..........................................................................23  II.4. α-symmetric random vectors..........................................................................27  II.5. Substable random vectors.............................................................................32III. Exchangeability and pseudo-isotropy.................................................................35  III.1. Pseudo-isotropic exchangeable sequences.................................................35  III.2. Schoenberg-type theorems..........................................................................40  III.3. Some generalizations...................................................................................43IV. Stable and substable stochastic processes.....................................................45  IV.1. Gaussian processes and Reproducing Kernel Hilbert Spaces....................45  IV.2. Elliptically contoured processes..................................................................47  IV.3. Symmetric stable stochastic processes......................................................50  IV.4. Spectral representation of symmetric stable processes.............................56  IV.5. Substable and pseudo-isotropic stochastic processes...............................59  IV.6. $L_α $-dependent stochastic integrals.......................................................62  IV.7. Random limit theorems...............................................................................63V. Infinite divisibility of substable stochastic processes..........................................64  V.1. Infinitely divisible distributions. Lévy measures............................................66  V.2. Approximative logarithm................................................................................68  V.3. Infinite divisibility of substable random vectors..............................................73  V.4. Infinite divisibility of substable processes......................................................77References...........................................................................................................80Index......................................................................................................................901991 Mathematics Subject Classification: Primary 46A15, 60B11; Secondary 60G07, 46B20, 60E07, 60K99.
LA - eng
KW - spherically isotropic measures; elliptically isometric measures; geometry of linear spaces; stochastic processes
UR - http://eudml.org/doc/270064
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.