Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1996
Access Full Book
topAbstract
topHow to cite
topMisiewicz Jolanta K.. Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of $L_α$. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1996. <http://eudml.org/doc/270064>.
@book{MisiewiczJolantaK1996,
abstract = {CONTENTSI. Introduction..........................................................................................................5II. Pseudo-isotropic random vectors........................................................................9 II.1. Symmetric stable vectors................................................................................9 II.2. Pseudo-isotropic random vectors..................................................................15 II.3. Elliptically contoured vectors..........................................................................23 II.4. α-symmetric random vectors..........................................................................27 II.5. Substable random vectors.............................................................................32III. Exchangeability and pseudo-isotropy.................................................................35 III.1. Pseudo-isotropic exchangeable sequences.................................................35 III.2. Schoenberg-type theorems..........................................................................40 III.3. Some generalizations...................................................................................43IV. Stable and substable stochastic processes.....................................................45 IV.1. Gaussian processes and Reproducing Kernel Hilbert Spaces....................45 IV.2. Elliptically contoured processes..................................................................47 IV.3. Symmetric stable stochastic processes......................................................50 IV.4. Spectral representation of symmetric stable processes.............................56 IV.5. Substable and pseudo-isotropic stochastic processes...............................59 IV.6. $L_α $-dependent stochastic integrals.......................................................62 IV.7. Random limit theorems...............................................................................63V. Infinite divisibility of substable stochastic processes..........................................64 V.1. Infinitely divisible distributions. Lévy measures............................................66 V.2. Approximative logarithm................................................................................68 V.3. Infinite divisibility of substable random vectors..............................................73 V.4. Infinite divisibility of substable processes......................................................77References...........................................................................................................80Index......................................................................................................................901991 Mathematics Subject Classification: Primary 46A15, 60B11; Secondary 60G07, 46B20, 60E07, 60K99.},
author = {Misiewicz Jolanta K.},
keywords = {spherically isotropic measures; elliptically isometric measures; geometry of linear spaces; stochastic processes},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of $L_α$},
url = {http://eudml.org/doc/270064},
year = {1996},
}
TY - BOOK
AU - Misiewicz Jolanta K.
TI - Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of $L_α$
PY - 1996
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSI. Introduction..........................................................................................................5II. Pseudo-isotropic random vectors........................................................................9 II.1. Symmetric stable vectors................................................................................9 II.2. Pseudo-isotropic random vectors..................................................................15 II.3. Elliptically contoured vectors..........................................................................23 II.4. α-symmetric random vectors..........................................................................27 II.5. Substable random vectors.............................................................................32III. Exchangeability and pseudo-isotropy.................................................................35 III.1. Pseudo-isotropic exchangeable sequences.................................................35 III.2. Schoenberg-type theorems..........................................................................40 III.3. Some generalizations...................................................................................43IV. Stable and substable stochastic processes.....................................................45 IV.1. Gaussian processes and Reproducing Kernel Hilbert Spaces....................45 IV.2. Elliptically contoured processes..................................................................47 IV.3. Symmetric stable stochastic processes......................................................50 IV.4. Spectral representation of symmetric stable processes.............................56 IV.5. Substable and pseudo-isotropic stochastic processes...............................59 IV.6. $L_α $-dependent stochastic integrals.......................................................62 IV.7. Random limit theorems...............................................................................63V. Infinite divisibility of substable stochastic processes..........................................64 V.1. Infinitely divisible distributions. Lévy measures............................................66 V.2. Approximative logarithm................................................................................68 V.3. Infinite divisibility of substable random vectors..............................................73 V.4. Infinite divisibility of substable processes......................................................77References...........................................................................................................80Index......................................................................................................................901991 Mathematics Subject Classification: Primary 46A15, 60B11; Secondary 60G07, 46B20, 60E07, 60K99.
LA - eng
KW - spherically isotropic measures; elliptically isometric measures; geometry of linear spaces; stochastic processes
UR - http://eudml.org/doc/270064
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.