Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1996
 
Access Full Book
topAbstract
topHow to cite
topMisiewicz Jolanta K.. Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of $L_α$. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1996. <http://eudml.org/doc/270064>.
@book{MisiewiczJolantaK1996,
	abstract = {CONTENTSI. Introduction..........................................................................................................5II. Pseudo-isotropic random vectors........................................................................9  II.1. Symmetric stable vectors................................................................................9  II.2. Pseudo-isotropic random vectors..................................................................15  II.3. Elliptically contoured vectors..........................................................................23  II.4. α-symmetric random vectors..........................................................................27  II.5. Substable random vectors.............................................................................32III. Exchangeability and pseudo-isotropy.................................................................35  III.1. Pseudo-isotropic exchangeable sequences.................................................35  III.2. Schoenberg-type theorems..........................................................................40  III.3. Some generalizations...................................................................................43IV. Stable and substable stochastic processes.....................................................45  IV.1. Gaussian processes and Reproducing Kernel Hilbert Spaces....................45  IV.2. Elliptically contoured processes..................................................................47  IV.3. Symmetric stable stochastic processes......................................................50  IV.4. Spectral representation of symmetric stable processes.............................56  IV.5. Substable and pseudo-isotropic stochastic processes...............................59  IV.6. $L_α $-dependent stochastic integrals.......................................................62  IV.7. Random limit theorems...............................................................................63V. Infinite divisibility of substable stochastic processes..........................................64  V.1. Infinitely divisible distributions. Lévy measures............................................66  V.2. Approximative logarithm................................................................................68  V.3. Infinite divisibility of substable random vectors..............................................73  V.4. Infinite divisibility of substable processes......................................................77References...........................................................................................................80Index......................................................................................................................901991 Mathematics Subject Classification: Primary 46A15, 60B11; Secondary 60G07, 46B20, 60E07, 60K99.},
	author = {Misiewicz Jolanta K.},
	keywords = {spherically isotropic measures; elliptically isometric measures; geometry of linear spaces; stochastic processes},
	language = {eng},
	location = {Warszawa},
	publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
	title = {Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of $L_α$},
	url = {http://eudml.org/doc/270064},
	year = {1996},
}
TY  - BOOK
AU  - Misiewicz Jolanta K.
TI  - Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of $L_α$
PY  - 1996
CY  - Warszawa
PB  - Instytut Matematyczny Polskiej Akademi Nauk
AB  - CONTENTSI. Introduction..........................................................................................................5II. Pseudo-isotropic random vectors........................................................................9  II.1. Symmetric stable vectors................................................................................9  II.2. Pseudo-isotropic random vectors..................................................................15  II.3. Elliptically contoured vectors..........................................................................23  II.4. α-symmetric random vectors..........................................................................27  II.5. Substable random vectors.............................................................................32III. Exchangeability and pseudo-isotropy.................................................................35  III.1. Pseudo-isotropic exchangeable sequences.................................................35  III.2. Schoenberg-type theorems..........................................................................40  III.3. Some generalizations...................................................................................43IV. Stable and substable stochastic processes.....................................................45  IV.1. Gaussian processes and Reproducing Kernel Hilbert Spaces....................45  IV.2. Elliptically contoured processes..................................................................47  IV.3. Symmetric stable stochastic processes......................................................50  IV.4. Spectral representation of symmetric stable processes.............................56  IV.5. Substable and pseudo-isotropic stochastic processes...............................59  IV.6. $L_α $-dependent stochastic integrals.......................................................62  IV.7. Random limit theorems...............................................................................63V. Infinite divisibility of substable stochastic processes..........................................64  V.1. Infinitely divisible distributions. Lévy measures............................................66  V.2. Approximative logarithm................................................................................68  V.3. Infinite divisibility of substable random vectors..............................................73  V.4. Infinite divisibility of substable processes......................................................77References...........................................................................................................80Index......................................................................................................................901991 Mathematics Subject Classification: Primary 46A15, 60B11; Secondary 60G07, 46B20, 60E07, 60K99.
LA  - eng
KW  - spherically isotropic measures; elliptically isometric measures; geometry of linear spaces; stochastic processes
UR  - http://eudml.org/doc/270064
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.