Generalized analytic functions with applications to singular ordinary and partial differential equations

Bogdan Ziemian

  • 1996

Abstract

top
CONTENTS Introduction.............................................................................................................................................5 I. Preliminaries.........................................................................................................................................7    1. A review of classical results in the theory of Laplace integra............................................................7    2. Boundary values of holomorphic functions......................................................................................10      2.1. Distributions as boundary values of holomorphic functions.........................................................10      2.2. Hyperfunctions in one variable....................................................................................................12    3. Mellin analytic functionals, Mellin hyperfunctions and Mellin distributions.........................................14    4. Laplace distributions.........................................................................................................................18      4.1. Convolution of Laplace distributions.............................................................................................21    5. Ecalle distributions.............................................................................................................................23      5.1. Alien derivatives of Ecalle distributions.........................................................................................24    6. Paley-Wiener type theorem for Mellin analytic functionals.................................................................25      6.1. Phragmén-Lindelöf type theorems................................................................................................29    7. The cut-off functions and their Mellin transforms...............................................................................30    8. Modified Cauchy transformation in dimension 1.................................................................................31 II. The theory of generalized analytic functions..........................................................................................33    9. Definition of a generalized analytic function........................................................................................34    10. The Mellin transform of a generalized analytic function.....................................................................35    11. Characterization of GAFs in terms of Mellin transforms.....................................................................37    12. The Borel and Taylor transformations in the class of GAFs..............................................................40    13. Operations on generalized analytic functions...................................................................................40    14. Resurgent functions.........................................................................................................................44      14.1. Alien derivatives of resurgent functions......................................................................................46      14.2. Taylor-Fourier representation of resurgent functions..................................................................47 III. Applications to singular linear differential equations..............................................................................48    15. Special functions as generalized analytic functions...........................................................................48    16. Fuchsian type ODEs with generalized analytic coefficients................................................................52    17. Fuchsian type PDEs with "constant" coefficients................................................................................58    18. GAFs in several variables..................................................................................................................73    19. Fuchsian type PDEs with generalized analytic coefficients................................................................78 Appendices.................................................................................................................................................84 I. The symbol of a distribution in the sense of A. Weinstein. Conormal distributions...................................84 II. Nonlinear singular differential equations.................................................................................................88    1. The case of ordinary differential equations..........................................................................................88    2. The case of partial differential equations.............................................................................................93 References...................................................................................................................................................94 Symbol index.................................................................................................................................................97 Subject index................................................................................................................................................991991 Mathematics Subject Classification: 34A20, 35A20, 35C20, 46F12, 30D15, 46F15

How to cite

top

Bogdan Ziemian. Generalized analytic functions with applications to singular ordinary and partial differential equations. 1996. <http://eudml.org/doc/270069>.

@book{BogdanZiemian1996,
abstract = {CONTENTS Introduction.............................................................................................................................................5 I. Preliminaries.........................................................................................................................................7    1. A review of classical results in the theory of Laplace integra............................................................7    2. Boundary values of holomorphic functions......................................................................................10      2.1. Distributions as boundary values of holomorphic functions.........................................................10      2.2. Hyperfunctions in one variable....................................................................................................12    3. Mellin analytic functionals, Mellin hyperfunctions and Mellin distributions.........................................14    4. Laplace distributions.........................................................................................................................18      4.1. Convolution of Laplace distributions.............................................................................................21    5. Ecalle distributions.............................................................................................................................23      5.1. Alien derivatives of Ecalle distributions.........................................................................................24    6. Paley-Wiener type theorem for Mellin analytic functionals.................................................................25      6.1. Phragmén-Lindelöf type theorems................................................................................................29    7. The cut-off functions and their Mellin transforms...............................................................................30    8. Modified Cauchy transformation in dimension 1.................................................................................31 II. The theory of generalized analytic functions..........................................................................................33    9. Definition of a generalized analytic function........................................................................................34    10. The Mellin transform of a generalized analytic function.....................................................................35    11. Characterization of GAFs in terms of Mellin transforms.....................................................................37    12. The Borel and Taylor transformations in the class of GAFs..............................................................40    13. Operations on generalized analytic functions...................................................................................40    14. Resurgent functions.........................................................................................................................44      14.1. Alien derivatives of resurgent functions......................................................................................46      14.2. Taylor-Fourier representation of resurgent functions..................................................................47 III. Applications to singular linear differential equations..............................................................................48    15. Special functions as generalized analytic functions...........................................................................48    16. Fuchsian type ODEs with generalized analytic coefficients................................................................52    17. Fuchsian type PDEs with "constant" coefficients................................................................................58    18. GAFs in several variables..................................................................................................................73    19. Fuchsian type PDEs with generalized analytic coefficients................................................................78 Appendices.................................................................................................................................................84 I. The symbol of a distribution in the sense of A. Weinstein. Conormal distributions...................................84 II. Nonlinear singular differential equations.................................................................................................88    1. The case of ordinary differential equations..........................................................................................88    2. The case of partial differential equations.............................................................................................93 References...................................................................................................................................................94 Symbol index.................................................................................................................................................97 Subject index................................................................................................................................................991991 Mathematics Subject Classification: 34A20, 35A20, 35C20, 46F12, 30D15, 46F15},
author = {Bogdan Ziemian},
keywords = {generalized analytic functions; GAF-functions; Laplace transformation of generalized functions; Mellin analytic functionals; Borel and Taylor transformations; change of variables; Fuchsian type ordinary and partial differential equations},
language = {eng},
title = {Generalized analytic functions with applications to singular ordinary and partial differential equations},
url = {http://eudml.org/doc/270069},
year = {1996},
}

TY - BOOK
AU - Bogdan Ziemian
TI - Generalized analytic functions with applications to singular ordinary and partial differential equations
PY - 1996
AB - CONTENTS Introduction.............................................................................................................................................5 I. Preliminaries.........................................................................................................................................7    1. A review of classical results in the theory of Laplace integra............................................................7    2. Boundary values of holomorphic functions......................................................................................10      2.1. Distributions as boundary values of holomorphic functions.........................................................10      2.2. Hyperfunctions in one variable....................................................................................................12    3. Mellin analytic functionals, Mellin hyperfunctions and Mellin distributions.........................................14    4. Laplace distributions.........................................................................................................................18      4.1. Convolution of Laplace distributions.............................................................................................21    5. Ecalle distributions.............................................................................................................................23      5.1. Alien derivatives of Ecalle distributions.........................................................................................24    6. Paley-Wiener type theorem for Mellin analytic functionals.................................................................25      6.1. Phragmén-Lindelöf type theorems................................................................................................29    7. The cut-off functions and their Mellin transforms...............................................................................30    8. Modified Cauchy transformation in dimension 1.................................................................................31 II. The theory of generalized analytic functions..........................................................................................33    9. Definition of a generalized analytic function........................................................................................34    10. The Mellin transform of a generalized analytic function.....................................................................35    11. Characterization of GAFs in terms of Mellin transforms.....................................................................37    12. The Borel and Taylor transformations in the class of GAFs..............................................................40    13. Operations on generalized analytic functions...................................................................................40    14. Resurgent functions.........................................................................................................................44      14.1. Alien derivatives of resurgent functions......................................................................................46      14.2. Taylor-Fourier representation of resurgent functions..................................................................47 III. Applications to singular linear differential equations..............................................................................48    15. Special functions as generalized analytic functions...........................................................................48    16. Fuchsian type ODEs with generalized analytic coefficients................................................................52    17. Fuchsian type PDEs with "constant" coefficients................................................................................58    18. GAFs in several variables..................................................................................................................73    19. Fuchsian type PDEs with generalized analytic coefficients................................................................78 Appendices.................................................................................................................................................84 I. The symbol of a distribution in the sense of A. Weinstein. Conormal distributions...................................84 II. Nonlinear singular differential equations.................................................................................................88    1. The case of ordinary differential equations..........................................................................................88    2. The case of partial differential equations.............................................................................................93 References...................................................................................................................................................94 Symbol index.................................................................................................................................................97 Subject index................................................................................................................................................991991 Mathematics Subject Classification: 34A20, 35A20, 35C20, 46F12, 30D15, 46F15
LA - eng
KW - generalized analytic functions; GAF-functions; Laplace transformation of generalized functions; Mellin analytic functionals; Borel and Taylor transformations; change of variables; Fuchsian type ordinary and partial differential equations
UR - http://eudml.org/doc/270069
ER -

Citations in EuDML Documents

top
  1. Maria E. Pliś, Poincaré theorem and nonlinear PDE's
  2. Grzegorz Łysik, Generalized analytic functions of Bogdan Ziemian
  3. Grzegorz Łysik, On 1-regular ordinary differential operators
  4. Maria Ewa Pliś, Bogdan Ziemian, Borel resummation of formal solutions to nonlinear Laplace equations in 2 variables
  5. Grzegorz Łysik, Laplace integrals in partial differential equations in papers of Bogdan Ziemian
  6. Bogdan Bojarski, Stanisław Łojasiewicz, Grzegorz Łysik, Zofia Szmydt, Bogdan Ziemian (1953-1997)

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.