Generalized analytic functions with applications to singular ordinary and partial differential equations
- 1996
Access Full Book
topAbstract
topHow to cite
topBogdan Ziemian. Generalized analytic functions with applications to singular ordinary and partial differential equations. 1996. <http://eudml.org/doc/270069>.
@book{BogdanZiemian1996,
abstract = {CONTENTS Introduction.............................................................................................................................................5 I. Preliminaries.........................................................................................................................................7 1. A review of classical results in the theory of Laplace integra............................................................7 2. Boundary values of holomorphic functions......................................................................................10 2.1. Distributions as boundary values of holomorphic functions.........................................................10 2.2. Hyperfunctions in one variable....................................................................................................12 3. Mellin analytic functionals, Mellin hyperfunctions and Mellin distributions.........................................14 4. Laplace distributions.........................................................................................................................18 4.1. Convolution of Laplace distributions.............................................................................................21 5. Ecalle distributions.............................................................................................................................23 5.1. Alien derivatives of Ecalle distributions.........................................................................................24 6. Paley-Wiener type theorem for Mellin analytic functionals.................................................................25 6.1. Phragmén-Lindelöf type theorems................................................................................................29 7. The cut-off functions and their Mellin transforms...............................................................................30 8. Modified Cauchy transformation in dimension 1.................................................................................31 II. The theory of generalized analytic functions..........................................................................................33 9. Definition of a generalized analytic function........................................................................................34 10. The Mellin transform of a generalized analytic function.....................................................................35 11. Characterization of GAFs in terms of Mellin transforms.....................................................................37 12. The Borel and Taylor transformations in the class of GAFs..............................................................40 13. Operations on generalized analytic functions...................................................................................40 14. Resurgent functions.........................................................................................................................44 14.1. Alien derivatives of resurgent functions......................................................................................46 14.2. Taylor-Fourier representation of resurgent functions..................................................................47 III. Applications to singular linear differential equations..............................................................................48 15. Special functions as generalized analytic functions...........................................................................48 16. Fuchsian type ODEs with generalized analytic coefficients................................................................52 17. Fuchsian type PDEs with "constant" coefficients................................................................................58 18. GAFs in several variables..................................................................................................................73 19. Fuchsian type PDEs with generalized analytic coefficients................................................................78 Appendices.................................................................................................................................................84 I. The symbol of a distribution in the sense of A. Weinstein. Conormal distributions...................................84 II. Nonlinear singular differential equations.................................................................................................88 1. The case of ordinary differential equations..........................................................................................88 2. The case of partial differential equations.............................................................................................93 References...................................................................................................................................................94 Symbol index.................................................................................................................................................97 Subject index................................................................................................................................................991991 Mathematics Subject Classification: 34A20, 35A20, 35C20, 46F12, 30D15, 46F15},
author = {Bogdan Ziemian},
keywords = {generalized analytic functions; GAF-functions; Laplace transformation of generalized functions; Mellin analytic functionals; Borel and Taylor transformations; change of variables; Fuchsian type ordinary and partial differential equations},
language = {eng},
title = {Generalized analytic functions with applications to singular ordinary and partial differential equations},
url = {http://eudml.org/doc/270069},
year = {1996},
}
TY - BOOK
AU - Bogdan Ziemian
TI - Generalized analytic functions with applications to singular ordinary and partial differential equations
PY - 1996
AB - CONTENTS Introduction.............................................................................................................................................5 I. Preliminaries.........................................................................................................................................7 1. A review of classical results in the theory of Laplace integra............................................................7 2. Boundary values of holomorphic functions......................................................................................10 2.1. Distributions as boundary values of holomorphic functions.........................................................10 2.2. Hyperfunctions in one variable....................................................................................................12 3. Mellin analytic functionals, Mellin hyperfunctions and Mellin distributions.........................................14 4. Laplace distributions.........................................................................................................................18 4.1. Convolution of Laplace distributions.............................................................................................21 5. Ecalle distributions.............................................................................................................................23 5.1. Alien derivatives of Ecalle distributions.........................................................................................24 6. Paley-Wiener type theorem for Mellin analytic functionals.................................................................25 6.1. Phragmén-Lindelöf type theorems................................................................................................29 7. The cut-off functions and their Mellin transforms...............................................................................30 8. Modified Cauchy transformation in dimension 1.................................................................................31 II. The theory of generalized analytic functions..........................................................................................33 9. Definition of a generalized analytic function........................................................................................34 10. The Mellin transform of a generalized analytic function.....................................................................35 11. Characterization of GAFs in terms of Mellin transforms.....................................................................37 12. The Borel and Taylor transformations in the class of GAFs..............................................................40 13. Operations on generalized analytic functions...................................................................................40 14. Resurgent functions.........................................................................................................................44 14.1. Alien derivatives of resurgent functions......................................................................................46 14.2. Taylor-Fourier representation of resurgent functions..................................................................47 III. Applications to singular linear differential equations..............................................................................48 15. Special functions as generalized analytic functions...........................................................................48 16. Fuchsian type ODEs with generalized analytic coefficients................................................................52 17. Fuchsian type PDEs with "constant" coefficients................................................................................58 18. GAFs in several variables..................................................................................................................73 19. Fuchsian type PDEs with generalized analytic coefficients................................................................78 Appendices.................................................................................................................................................84 I. The symbol of a distribution in the sense of A. Weinstein. Conormal distributions...................................84 II. Nonlinear singular differential equations.................................................................................................88 1. The case of ordinary differential equations..........................................................................................88 2. The case of partial differential equations.............................................................................................93 References...................................................................................................................................................94 Symbol index.................................................................................................................................................97 Subject index................................................................................................................................................991991 Mathematics Subject Classification: 34A20, 35A20, 35C20, 46F12, 30D15, 46F15
LA - eng
KW - generalized analytic functions; GAF-functions; Laplace transformation of generalized functions; Mellin analytic functionals; Borel and Taylor transformations; change of variables; Fuchsian type ordinary and partial differential equations
UR - http://eudml.org/doc/270069
ER -
Citations in EuDML Documents
top- Maria E. Pliś, Poincaré theorem and nonlinear PDE's
- Grzegorz Łysik, Generalized analytic functions of Bogdan Ziemian
- Grzegorz Łysik, On 1-regular ordinary differential operators
- Maria Ewa Pliś, Bogdan Ziemian, Borel resummation of formal solutions to nonlinear Laplace equations in 2 variables
- Grzegorz Łysik, Laplace integrals in partial differential equations in papers of Bogdan Ziemian
- Bogdan Bojarski, Stanisław Łojasiewicz, Grzegorz Łysik, Zofia Szmydt, Bogdan Ziemian (1953-1997)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.