New characterizations for weighted composition operator from Zygmund type spaces to Bloch type spaces
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 2, page 331-346
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGuo, Xin-Cui, and Zhou, Ze-Hua. "New characterizations for weighted composition operator from Zygmund type spaces to Bloch type spaces." Czechoslovak Mathematical Journal 65.2 (2015): 331-346. <http://eudml.org/doc/270082>.
@article{Guo2015,
abstract = {Let $u$ be a holomorphic function and $\varphi $ a holomorphic self-map of the open unit disk $\mathbb \{D\}$ in the complex plane. We provide new characterizations for the boundedness of the weighted composition operators $uC_\{\varphi \}$ from Zygmund type spaces to Bloch type spaces in $\mathbb \{D\}$ in terms of $u$, $ \varphi $, their derivatives, and $\varphi ^n$, the $n$-th power of $\varphi $. Moreover, we obtain some similar estimates for the essential norms of the operators $uC_\{\varphi \}$, from which sufficient and necessary conditions of compactness of $uC_\{\varphi \}$ follows immediately.},
author = {Guo, Xin-Cui, Zhou, Ze-Hua},
journal = {Czechoslovak Mathematical Journal},
keywords = {weighted composition operator; Zygmund type space; Bloch type space; essential norm},
language = {eng},
number = {2},
pages = {331-346},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New characterizations for weighted composition operator from Zygmund type spaces to Bloch type spaces},
url = {http://eudml.org/doc/270082},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Guo, Xin-Cui
AU - Zhou, Ze-Hua
TI - New characterizations for weighted composition operator from Zygmund type spaces to Bloch type spaces
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 331
EP - 346
AB - Let $u$ be a holomorphic function and $\varphi $ a holomorphic self-map of the open unit disk $\mathbb {D}$ in the complex plane. We provide new characterizations for the boundedness of the weighted composition operators $uC_{\varphi }$ from Zygmund type spaces to Bloch type spaces in $\mathbb {D}$ in terms of $u$, $ \varphi $, their derivatives, and $\varphi ^n$, the $n$-th power of $\varphi $. Moreover, we obtain some similar estimates for the essential norms of the operators $uC_{\varphi }$, from which sufficient and necessary conditions of compactness of $uC_{\varphi }$ follows immediately.
LA - eng
KW - weighted composition operator; Zygmund type space; Bloch type space; essential norm
UR - http://eudml.org/doc/270082
ER -
References
top- Aron, R., Lindström, M., 10.1007/BF02772223, Isr. J. Math. 141 (2004), 263-276. (2004) MR2063037DOI10.1007/BF02772223
- Bayart, F., 10.1016/j.aim.2009.10.002, Adv. Math. 223 (2010), 1666-1705. (2010) Zbl1189.47025MR2592506DOI10.1016/j.aim.2009.10.002
- Bayart, F., 10.1016/j.aim.2006.05.012, Adv. Math. 209 (2007), 649-665. (2007) Zbl1112.32002MR2296311DOI10.1016/j.aim.2006.05.012
- Bayart, F., Charpentier, S., 10.1090/S0002-9947-2012-05646-7, Trans. Am. Math. Soc. 365 (2013), 911-938. (2013) Zbl1269.47023MR2995378DOI10.1090/S0002-9947-2012-05646-7
- Bonet, J., Lindström, M., Wolf, E., 10.1017/S144678870800013X, J. Aust. Math. Soc. 84 (2008), 9-20. (2008) MR2469264DOI10.1017/S144678870800013X
- Chen, C., Zhou, Z.-H., 10.1080/10652469.2014.887073, Integral Transforms Spec. Funct. 25 (2014), 552-561. (2014) Zbl1297.47024MR3195940DOI10.1080/10652469.2014.887073
- Cowen, C. C., MacCluer, B. D., Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics CRC Press, Boca Raton (1995). (1995) Zbl0873.47017MR1397026
- Esmaeili, K., Lindström, M., 10.1007/s00020-013-2038-4, Integral Equations Oper. Theory 75 (2013), 473-490. (2013) Zbl1306.47036MR3032664DOI10.1007/s00020-013-2038-4
- Fang, Z.-S., Zhou, Z.-H., 10.4153/CMB-2013-043-4, Can. Math. Bull. 57 (2014), 794-802. (2014) MR3270799DOI10.4153/CMB-2013-043-4
- Fang, Z.-S., Zhou, Z.-H., 10.1007/s00013-012-0457-0, Arch. Math. 99 (2012), 547-556. (2012) Zbl1263.47028MR3001558DOI10.1007/s00013-012-0457-0
- Gorkin, P., MacCluer, B. D., 10.1007/s00020-002-1203-y, Integral Equations Oper. Theory 48 (2004), 27-40. (2004) Zbl1065.47027MR2029942DOI10.1007/s00020-002-1203-y
- Hyvärinen, O., Kemppainen, M., Lindström, M., Rautio, A., Saukko, E., 10.1007/s00020-011-1919-7, Integral Equations Oper. Theory 72 (2012), 151-157. (2012) Zbl1252.47026MR2872471DOI10.1007/s00020-011-1919-7
- Hyvärinen, O., Lindström, M., 10.1016/j.jmaa.2012.03.059, J. Math. Anal. Appl. 393 (2012), 38-44. (2012) Zbl1267.47040MR2921646DOI10.1016/j.jmaa.2012.03.059
- Li, S., Stević, S., 10.1016/j.amc.2008.10.006, Appl. Math. Comput. 206 (2008), 825-831. (2008) Zbl1215.47022MR2483058DOI10.1016/j.amc.2008.10.006
- Liang, Y.-X., Zhou, Z.-H., 10.15352/bjma/1381782092, Banach J. Math. Anal. 8 (2014), 118-137. (2014) MR3161687DOI10.15352/bjma/1381782092
- Liang, Y.-X., Zhou, Z.-H., 10.1007/s00013-013-0499-y, Arch. Math. 100 (2013), 347-360. (2013) MR3044119DOI10.1007/s00013-013-0499-y
- Liang, Y.-X., Zhou, Z.-H., Estimates of essential norms of weighted composition operator from Bloch type spaces to Zygmund type spaces, arXiv:1401.0031v1 [math.FA], 2013, . MR3044119
- MacCluer, B. D., Zhao, R., 10.1216/rmjm/1181075473, Rocky Mt. J. Math. 33 (2003), 1437-1458. (2003) Zbl1061.30023MR2052498DOI10.1216/rmjm/1181075473
- Manhas, J. S., Zhao, R., 10.1016/j.jmaa.2011.11.039, J. Math. Anal. Appl. 389 (2012), 32-47. (2012) Zbl1267.47042MR2876478DOI10.1016/j.jmaa.2011.11.039
- Montes-Rodríguez, A., 10.1112/S0024610700008875, J. Lond. Math. Soc., II. Ser. 61 (2000), 872-884. (2000) Zbl0959.47016MR1766111DOI10.1112/S0024610700008875
- Shapiro, J. H., Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics Springer, New York (1993). (1993) Zbl0791.30033MR1237406
- Song, X.-J., Zhou, Z.-H., 10.1016/j.jmaa.2012.12.030, J. Math. Anal. Appl. 401 (2013), 447-457. (2013) Zbl1259.47029MR3011286DOI10.1016/j.jmaa.2012.12.030
- Stević, S., Essential norms of weighted composition operators from the -Bloch space to a weighted-type space on the unit ball, Abstr. Appl. Anal. 2008 (2008), Article ID 279691, 11 pages. (2008) Zbl1160.32011MR2453144
- Stević, S., Chen, R., Zhou, Z., 10.1070/SM2010v201n02ABEH004073, Sb. Math. 201 (2010), 289-319 translation from Mat. Sb. 201 (2010), 131-160 Russian. (2010) Zbl1250.47029MR2656326DOI10.1070/SM2010v201n02ABEH004073
- Wulan, H., Zheng, D., Zhu, K., 10.1090/S0002-9939-09-09961-4, Proc. Am. Math. Soc. 137 (2009), 3861-3868. (2009) Zbl1194.47038MR2529895DOI10.1090/S0002-9939-09-09961-4
- Ye, S., Hu, Q., Weighted composition operators on the Zygmund space, Abstr. Appl. Anal. 2012 (2012), Article ID 462482, 18 pages. (2012) Zbl1277.47038MR2935151
- Zeng, H.-G., Zhou, Z. H., 10.1216/RMJ-2012-42-3-1049, Rocky Mt. J. Math. 42 (2012), 1049-1071. (2012) Zbl1268.47035MR2966485DOI10.1216/RMJ-2012-42-3-1049
- Zhao, R., 10.1090/S0002-9939-10-10285-8, Proc. Am. Math. Soc. 138 (2010), 2537-2546. (2010) Zbl1190.47028MR2607883DOI10.1090/S0002-9939-10-10285-8
- Zhou, Z.-H., Chen, R.-Y., 10.1142/S0129167X08004984, Int. J. Math. 19 (2008), 899-926. (2008) Zbl1163.47021MR2446507DOI10.1142/S0129167X08004984
- Zhou, Z.-H., Liang, Y.-X., 10.1007/s10587-012-0040-7, Czech. Math. J. 62 (2012), 695-708. (2012) Zbl1258.47051MR2984629DOI10.1007/s10587-012-0040-7
- Zhou, Z.-H., Liang, Y.-X., Dong, X.-T., 10.4064/ap104-3-7, Ann. Pol. Math. 104 (2012), 309-319. (2012) MR2914538DOI10.4064/ap104-3-7
- Zhou, Z., Shi, J., 10.1307/mmj/1028575740, Mich. Math. J. 50 (2002), 381-405. (2002) Zbl1044.47021MR1914071DOI10.1307/mmj/1028575740
- Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics 226 Springer, New York (2005). (2005) Zbl1067.32005MR2115155
- Zhu, K., 10.1216/rmjm/1181072549, Rocky Mt. J. Math. 23 (1993), 1143-1177. (1993) Zbl0787.30019MR1245472DOI10.1216/rmjm/1181072549
- Zhu, K., Operator Theory in Function Spaces, Pure and Applied Mathematics 139 Marcel Dekker, New York (1990). (1990) Zbl0706.47019MR1074007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.