New characterizations for weighted composition operator from Zygmund type spaces to Bloch type spaces

Xin-Cui Guo; Ze-Hua Zhou

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 2, page 331-346
  • ISSN: 0011-4642

Abstract

top
Let u be a holomorphic function and ϕ a holomorphic self-map of the open unit disk 𝔻 in the complex plane. We provide new characterizations for the boundedness of the weighted composition operators u C ϕ from Zygmund type spaces to Bloch type spaces in 𝔻 in terms of u , ϕ , their derivatives, and ϕ n , the n -th power of ϕ . Moreover, we obtain some similar estimates for the essential norms of the operators u C ϕ , from which sufficient and necessary conditions of compactness of u C ϕ follows immediately.

How to cite

top

Guo, Xin-Cui, and Zhou, Ze-Hua. "New characterizations for weighted composition operator from Zygmund type spaces to Bloch type spaces." Czechoslovak Mathematical Journal 65.2 (2015): 331-346. <http://eudml.org/doc/270082>.

@article{Guo2015,
abstract = {Let $u$ be a holomorphic function and $\varphi $ a holomorphic self-map of the open unit disk $\mathbb \{D\}$ in the complex plane. We provide new characterizations for the boundedness of the weighted composition operators $uC_\{\varphi \}$ from Zygmund type spaces to Bloch type spaces in $\mathbb \{D\}$ in terms of $u$, $ \varphi $, their derivatives, and $\varphi ^n$, the $n$-th power of $\varphi $. Moreover, we obtain some similar estimates for the essential norms of the operators $uC_\{\varphi \}$, from which sufficient and necessary conditions of compactness of $uC_\{\varphi \}$ follows immediately.},
author = {Guo, Xin-Cui, Zhou, Ze-Hua},
journal = {Czechoslovak Mathematical Journal},
keywords = {weighted composition operator; Zygmund type space; Bloch type space; essential norm},
language = {eng},
number = {2},
pages = {331-346},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New characterizations for weighted composition operator from Zygmund type spaces to Bloch type spaces},
url = {http://eudml.org/doc/270082},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Guo, Xin-Cui
AU - Zhou, Ze-Hua
TI - New characterizations for weighted composition operator from Zygmund type spaces to Bloch type spaces
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 331
EP - 346
AB - Let $u$ be a holomorphic function and $\varphi $ a holomorphic self-map of the open unit disk $\mathbb {D}$ in the complex plane. We provide new characterizations for the boundedness of the weighted composition operators $uC_{\varphi }$ from Zygmund type spaces to Bloch type spaces in $\mathbb {D}$ in terms of $u$, $ \varphi $, their derivatives, and $\varphi ^n$, the $n$-th power of $\varphi $. Moreover, we obtain some similar estimates for the essential norms of the operators $uC_{\varphi }$, from which sufficient and necessary conditions of compactness of $uC_{\varphi }$ follows immediately.
LA - eng
KW - weighted composition operator; Zygmund type space; Bloch type space; essential norm
UR - http://eudml.org/doc/270082
ER -

References

top
  1. Aron, R., Lindström, M., 10.1007/BF02772223, Isr. J. Math. 141 (2004), 263-276. (2004) MR2063037DOI10.1007/BF02772223
  2. Bayart, F., 10.1016/j.aim.2009.10.002, Adv. Math. 223 (2010), 1666-1705. (2010) Zbl1189.47025MR2592506DOI10.1016/j.aim.2009.10.002
  3. Bayart, F., 10.1016/j.aim.2006.05.012, Adv. Math. 209 (2007), 649-665. (2007) Zbl1112.32002MR2296311DOI10.1016/j.aim.2006.05.012
  4. Bayart, F., Charpentier, S., 10.1090/S0002-9947-2012-05646-7, Trans. Am. Math. Soc. 365 (2013), 911-938. (2013) Zbl1269.47023MR2995378DOI10.1090/S0002-9947-2012-05646-7
  5. Bonet, J., Lindström, M., Wolf, E., 10.1017/S144678870800013X, J. Aust. Math. Soc. 84 (2008), 9-20. (2008) MR2469264DOI10.1017/S144678870800013X
  6. Chen, C., Zhou, Z.-H., 10.1080/10652469.2014.887073, Integral Transforms Spec. Funct. 25 (2014), 552-561. (2014) Zbl1297.47024MR3195940DOI10.1080/10652469.2014.887073
  7. Cowen, C. C., MacCluer, B. D., Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics CRC Press, Boca Raton (1995). (1995) Zbl0873.47017MR1397026
  8. Esmaeili, K., Lindström, M., 10.1007/s00020-013-2038-4, Integral Equations Oper. Theory 75 (2013), 473-490. (2013) Zbl1306.47036MR3032664DOI10.1007/s00020-013-2038-4
  9. Fang, Z.-S., Zhou, Z.-H., 10.4153/CMB-2013-043-4, Can. Math. Bull. 57 (2014), 794-802. (2014) MR3270799DOI10.4153/CMB-2013-043-4
  10. Fang, Z.-S., Zhou, Z.-H., 10.1007/s00013-012-0457-0, Arch. Math. 99 (2012), 547-556. (2012) Zbl1263.47028MR3001558DOI10.1007/s00013-012-0457-0
  11. Gorkin, P., MacCluer, B. D., 10.1007/s00020-002-1203-y, Integral Equations Oper. Theory 48 (2004), 27-40. (2004) Zbl1065.47027MR2029942DOI10.1007/s00020-002-1203-y
  12. Hyvärinen, O., Kemppainen, M., Lindström, M., Rautio, A., Saukko, E., 10.1007/s00020-011-1919-7, Integral Equations Oper. Theory 72 (2012), 151-157. (2012) Zbl1252.47026MR2872471DOI10.1007/s00020-011-1919-7
  13. Hyvärinen, O., Lindström, M., 10.1016/j.jmaa.2012.03.059, J. Math. Anal. Appl. 393 (2012), 38-44. (2012) Zbl1267.47040MR2921646DOI10.1016/j.jmaa.2012.03.059
  14. Li, S., Stević, S., 10.1016/j.amc.2008.10.006, Appl. Math. Comput. 206 (2008), 825-831. (2008) Zbl1215.47022MR2483058DOI10.1016/j.amc.2008.10.006
  15. Liang, Y.-X., Zhou, Z.-H., 10.15352/bjma/1381782092, Banach J. Math. Anal. 8 (2014), 118-137. (2014) MR3161687DOI10.15352/bjma/1381782092
  16. Liang, Y.-X., Zhou, Z.-H., 10.1007/s00013-013-0499-y, Arch. Math. 100 (2013), 347-360. (2013) MR3044119DOI10.1007/s00013-013-0499-y
  17. Liang, Y.-X., Zhou, Z.-H., Estimates of essential norms of weighted composition operator from Bloch type spaces to Zygmund type spaces, arXiv:1401.0031v1 [math.FA], 2013, . MR3044119
  18. MacCluer, B. D., Zhao, R., 10.1216/rmjm/1181075473, Rocky Mt. J. Math. 33 (2003), 1437-1458. (2003) Zbl1061.30023MR2052498DOI10.1216/rmjm/1181075473
  19. Manhas, J. S., Zhao, R., 10.1016/j.jmaa.2011.11.039, J. Math. Anal. Appl. 389 (2012), 32-47. (2012) Zbl1267.47042MR2876478DOI10.1016/j.jmaa.2011.11.039
  20. Montes-Rodríguez, A., 10.1112/S0024610700008875, J. Lond. Math. Soc., II. Ser. 61 (2000), 872-884. (2000) Zbl0959.47016MR1766111DOI10.1112/S0024610700008875
  21. Shapiro, J. H., Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics Springer, New York (1993). (1993) Zbl0791.30033MR1237406
  22. Song, X.-J., Zhou, Z.-H., 10.1016/j.jmaa.2012.12.030, J. Math. Anal. Appl. 401 (2013), 447-457. (2013) Zbl1259.47029MR3011286DOI10.1016/j.jmaa.2012.12.030
  23. Stević, S., Essential norms of weighted composition operators from the α -Bloch space to a weighted-type space on the unit ball, Abstr. Appl. Anal. 2008 (2008), Article ID 279691, 11 pages. (2008) Zbl1160.32011MR2453144
  24. Stević, S., Chen, R., Zhou, Z., 10.1070/SM2010v201n02ABEH004073, Sb. Math. 201 (2010), 289-319 translation from Mat. Sb. 201 (2010), 131-160 Russian. (2010) Zbl1250.47029MR2656326DOI10.1070/SM2010v201n02ABEH004073
  25. Wulan, H., Zheng, D., Zhu, K., 10.1090/S0002-9939-09-09961-4, Proc. Am. Math. Soc. 137 (2009), 3861-3868. (2009) Zbl1194.47038MR2529895DOI10.1090/S0002-9939-09-09961-4
  26. Ye, S., Hu, Q., Weighted composition operators on the Zygmund space, Abstr. Appl. Anal. 2012 (2012), Article ID 462482, 18 pages. (2012) Zbl1277.47038MR2935151
  27. Zeng, H.-G., Zhou, Z. H., 10.1216/RMJ-2012-42-3-1049, Rocky Mt. J. Math. 42 (2012), 1049-1071. (2012) Zbl1268.47035MR2966485DOI10.1216/RMJ-2012-42-3-1049
  28. Zhao, R., 10.1090/S0002-9939-10-10285-8, Proc. Am. Math. Soc. 138 (2010), 2537-2546. (2010) Zbl1190.47028MR2607883DOI10.1090/S0002-9939-10-10285-8
  29. Zhou, Z.-H., Chen, R.-Y., 10.1142/S0129167X08004984, Int. J. Math. 19 (2008), 899-926. (2008) Zbl1163.47021MR2446507DOI10.1142/S0129167X08004984
  30. Zhou, Z.-H., Liang, Y.-X., 10.1007/s10587-012-0040-7, Czech. Math. J. 62 (2012), 695-708. (2012) Zbl1258.47051MR2984629DOI10.1007/s10587-012-0040-7
  31. Zhou, Z.-H., Liang, Y.-X., Dong, X.-T., 10.4064/ap104-3-7, Ann. Pol. Math. 104 (2012), 309-319. (2012) MR2914538DOI10.4064/ap104-3-7
  32. Zhou, Z., Shi, J., 10.1307/mmj/1028575740, Mich. Math. J. 50 (2002), 381-405. (2002) Zbl1044.47021MR1914071DOI10.1307/mmj/1028575740
  33. Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics 226 Springer, New York (2005). (2005) Zbl1067.32005MR2115155
  34. Zhu, K., 10.1216/rmjm/1181072549, Rocky Mt. J. Math. 23 (1993), 1143-1177. (1993) Zbl0787.30019MR1245472DOI10.1216/rmjm/1181072549
  35. Zhu, K., Operator Theory in Function Spaces, Pure and Applied Mathematics 139 Marcel Dekker, New York (1990). (1990) Zbl0706.47019MR1074007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.