Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball

Ze-Hua Zhou; Yu-Xia Liang

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 3, page 695-708
  • ISSN: 0011-4642

Abstract

top
In this paper, we limit our analysis to the difference of the weighted composition operators acting from the Hardy space to weighted-type space in the unit ball of N , and give some necessary and sufficient conditions for their boundedness or compactness. The results generalize the corresponding results on the single weighted composition operators and on the differences of composition operators, for example, M. Lindström and E. Wolf: Essential norm of the difference of weighted composition operators. Monatsh. Math. 153 (2008), 133–143.

How to cite

top

Zhou, Ze-Hua, and Liang, Yu-Xia. "Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball." Czechoslovak Mathematical Journal 62.3 (2012): 695-708. <http://eudml.org/doc/246862>.

@article{Zhou2012,
abstract = {In this paper, we limit our analysis to the difference of the weighted composition operators acting from the Hardy space to weighted-type space in the unit ball of $\mathbb \{C\}^N$, and give some necessary and sufficient conditions for their boundedness or compactness. The results generalize the corresponding results on the single weighted composition operators and on the differences of composition operators, for example, M. Lindström and E. Wolf: Essential norm of the difference of weighted composition operators. Monatsh. Math. 153 (2008), 133–143.},
author = {Zhou, Ze-Hua, Liang, Yu-Xia},
journal = {Czechoslovak Mathematical Journal},
keywords = {weighted composition operator; Hardy space; weighted Bergman space; essential norm; compact; difference; weighted composition operator; Hardy space; weighted Bergman space; essential norm},
language = {eng},
number = {3},
pages = {695-708},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball},
url = {http://eudml.org/doc/246862},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Zhou, Ze-Hua
AU - Liang, Yu-Xia
TI - Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 695
EP - 708
AB - In this paper, we limit our analysis to the difference of the weighted composition operators acting from the Hardy space to weighted-type space in the unit ball of $\mathbb {C}^N$, and give some necessary and sufficient conditions for their boundedness or compactness. The results generalize the corresponding results on the single weighted composition operators and on the differences of composition operators, for example, M. Lindström and E. Wolf: Essential norm of the difference of weighted composition operators. Monatsh. Math. 153 (2008), 133–143.
LA - eng
KW - weighted composition operator; Hardy space; weighted Bergman space; essential norm; compact; difference; weighted composition operator; Hardy space; weighted Bergman space; essential norm
UR - http://eudml.org/doc/246862
ER -

References

top
  1. Allen, R. F., Colonna, F., 10.1007/s00020-009-1736-4, Integral Equations Oper. Theory 66 (2010), 21-40. (2010) MR2591634DOI10.1007/s00020-009-1736-4
  2. Bonet, J., Domański, P., Lindström, M., 10.4153/CMB-1999-016-x, Can. Math. Bull. 42 (1999), 139-148. (1999) Zbl0939.47020MR1692002DOI10.4153/CMB-1999-016-x
  3. Bonet, J., Domański, P., Lindström, M., Taskinen, J., 10.1017/S1446788700001336, J. Aust. Math. Soc., Ser. A 64 (1998), 101-118. (1998) Zbl0912.47014MR1490150DOI10.1017/S1446788700001336
  4. Bonet, J., Lindström, M., Wolf, E., 10.1017/S144678870800013X, J. Aust. Math. Soc. 84 (2008), 9-20. (2008) MR2469264DOI10.1017/S144678870800013X
  5. Cowen, C. C., MacCluer, B. D., Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics Boca Raton, FL, CRC Press (1995). (1995) Zbl0873.47017MR1397026
  6. Dai, J. N., Ouyang, C. H., Differences of weighted composition operators on H α ( B N ) , J. Inequal. Appl. Article ID 127431 (2009), 19 pp. (2009) MR2579553
  7. Fang, Z. S., Zhou, Z. H., Differences of composition operators on the space of bounded analytic functions in the polydisc, Abstr. Appl. Anal. Article ID 983132 (2008), 10 pp. (2008) Zbl1160.32009MR2466222
  8. Fang, Z. S., Zhou, Z. H., 10.1017/S0004972709000045, Bull. Aust. Math. Soc. 79 (2009), 465-471. (2009) Zbl1166.47032MR2505351DOI10.1017/S0004972709000045
  9. Gorkin, P., Mortini, R., Suarez, D., Homotopic composition operators on H ( B n ) , Jarosz, Krzysztof (ed.), Function spaces. Proceedings of the 4th conference, Edwardsville, IL, USA (2002), Providence, RI: American Mathematical Society (AMS), Contemp. Math 328 177-188 (2003). (2003) MR1990399
  10. Hosokawa, T., Izuchi, K., Ohno, S., Topological structure of the space of weighted composition operators on H , Integral Equations Oper. Theory 53 (2005), 509-526. (2005) MR2187435
  11. Hosokawa, T., Ohno, S., 10.1016/j.jmaa.2005.04.080, J. Math. Anal. Appl. 314 (2006), 736-748. (2006) Zbl1087.47029MR2185263DOI10.1016/j.jmaa.2005.04.080
  12. Hosokawa, T., Ohno, S., Differences of composition operators on the Bloch spaces, J. Oper. Theory 57 (2007), 229-242. (2007) Zbl1174.47019MR2328996
  13. Lindström, M., Wolf, E., 10.1007/s00605-007-0493-1, Monatsh. Math. 153 (2008), 133-143. (2008) MR2373366DOI10.1007/s00605-007-0493-1
  14. MacCluer, B. D., 10.1307/mmj/1029003191, Mich. Math. J. 32 (1985), 237-248. (1985) Zbl0585.47022MR0783578DOI10.1307/mmj/1029003191
  15. MacCluer, B. D., Ohno, S., Zhao, R., Topological structure of the space of composition operators on H , Integral Equations Oper. Theory 40 (2001), 481-494. (2001) MR1839472
  16. Moorhouse, J., 10.1016/j.jfa.2004.01.012, J. Funct. Anal. 219 (2005), 70-92. (2005) Zbl1087.47032MR2108359DOI10.1016/j.jfa.2004.01.012
  17. Ohno, S., Stroethoff, K., Zhao, R., 10.1216/rmjm/1181069993, Rocky Mt. J. Math. 33 (2003), 191-215. (2003) Zbl1042.47018MR1994487DOI10.1216/rmjm/1181069993
  18. Shapiro, J. H., Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics New York, Springer (1993). (1993) Zbl0791.30033MR1237406
  19. Stević, S., Wolf, E., 10.1016/j.amc.2009.07.036, Appl. Math. Comput. 215 (2009), 1752-1760. (2009) MR2557418DOI10.1016/j.amc.2009.07.036
  20. Toews, C., 10.1007/s00020-002-1180-1, Integral Equations Oper. Theory 48 (2004), 265-280. (2004) MR2030531DOI10.1007/s00020-002-1180-1
  21. Wolf, E., 10.1007/s00025-007-0283-z, Result. Math. 51 (2008), 361-372. (2008) Zbl1154.47018MR2400173DOI10.1007/s00025-007-0283-z
  22. Yang, K. B., Zhou, Z. H., 10.1007/s10587-010-0079-2, Czech. Math. J. 60 (2010), 1139-1152. (2010) Zbl1220.47045MR2738975DOI10.1007/s10587-010-0079-2
  23. Zeng, H. G., Zhou, Z. H., An estimate of the essential norm of a composition operator from F ( p , q , s ) to α in the unit ball, J. Inequal. Appl. Article ID 132970 (2010), 22 pp. (2010) MR2645968
  24. Zhou, Z. H., Chen, R. Y., 10.1142/S0129167X08004984, Int. J. Math. 19 (2008), 899-926. (2008) Zbl1163.47021MR2446507DOI10.1142/S0129167X08004984
  25. Zhou, Z. H., Shi, J. H., 10.1307/mmj/1028575740, Mich. Math. J. 50 (2002), 381-405. (2002) Zbl1044.47021MR1914071DOI10.1307/mmj/1028575740
  26. Zhu, K. H., Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics 226 Springer, New York (2005). (2005) Zbl1067.32005MR2115155

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.