A new Lindelöf space with points
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 2, page 223-230
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDow, Alan S.. "A new Lindelöf space with points $G_\delta $." Commentationes Mathematicae Universitatis Carolinae 56.2 (2015): 223-230. <http://eudml.org/doc/270089>.
@article{Dow2015,
abstract = {We prove that $\diamondsuit ^*$ implies there is a zero-dimensional Hausdorff Lindelöf space of cardinality $2^\{\aleph _1\}$ which has points $G_\delta $. In addition, this space has the property that it need not be Lindelöf after countably closed forcing.},
author = {Dow, Alan S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Lindelöf; forcing; Lindelöf; forcing; destructible space; },
language = {eng},
number = {2},
pages = {223-230},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A new Lindelöf space with points $G_\delta $},
url = {http://eudml.org/doc/270089},
volume = {56},
year = {2015},
}
TY - JOUR
AU - Dow, Alan S.
TI - A new Lindelöf space with points $G_\delta $
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 2
SP - 223
EP - 230
AB - We prove that $\diamondsuit ^*$ implies there is a zero-dimensional Hausdorff Lindelöf space of cardinality $2^{\aleph _1}$ which has points $G_\delta $. In addition, this space has the property that it need not be Lindelöf after countably closed forcing.
LA - eng
KW - Lindelöf; forcing; Lindelöf; forcing; destructible space;
UR - http://eudml.org/doc/270089
ER -
References
top- Arhangel’skii A.V., Ponomarev, V.I., Fundamentals of General Topology: Problems and Exercises, Reidel, Dordrecht, 1984. MR0785749
- Devlin K.J., Constructibility, Perspectives in Mathematical Logic, Springer, Berlin, 1984; MR 750828 (85k:03001). Zbl0542.03029MR0750828
- Engelking R., General Topology, translated from the Polish by the author, Monografie Matematyczne, Tom 60 [Mathematical Monographs, Vol. 60], PWN—Polish Scientific Publishers, Warsaw, 1977; MR 0500780 (58 #18316b). Zbl0684.54001MR0500780
- Gorelic I., The Baire category and forcing large Lindelöf spaces with points , Proc. Amer. Math. Soc. 118 (1993), no. 2, 603–607; MR 1132417 (93g:03046). MR1132417
- Juhász I., Cardinal functions. II, Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 63–109; MR 776621 (86j:54008). Zbl0559.54004MR0776621
- Juhász I., Cardinal functions in topology---ten years later, second ed., Mathematical Centre Tracts, vol. 123, Mathematisch Centrum, Amsterdam, 1980; MR 576927 (82a:54002). Zbl0479.54001MR0576927
- Kanamori A., The higher infinite. Large cardinals in set theory from their beginnings, second ed., Springer Monographs in Mathematics, Springer, Berlin, 2003; MR 1994835 (2004f:03092). Zbl1154.03033MR1994835
- Knight R.W., 10.4064/fm194-1-3, Fund. Math. 194 (2007), no. 1, 45–66; MR 2291716 (2008d:03048). Zbl1126.03047MR2291716DOI10.4064/fm194-1-3
- Kunen K., Set theory. An introduction to independence proofs, Studies in Logic and the Foundations of Mathematics, 102, North-Holland, Amsterdam-New York, 1980; MR 597342 (82f:03001). Zbl0534.03026MR0597342
- Tall F.D., 10.1016/0166-8641(95)90002-0, Topology Appl. 63 (1995), no. 1, 21–38; MR 1328616 (96i:54016). MR1328616DOI10.1016/0166-8641(95)90002-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.