Characterizations of Archimedean n -copulas

Włodzimierz Wysocki

Kybernetika (2015)

  • Volume: 51, Issue: 2, page 212-230
  • ISSN: 0023-5954

Abstract

top
We present three characterizations of n -dimensional Archimedean copulas: algebraic, differential and diagonal. The first is due to Jouini and Clemen. We formulate it in a more general form, in terms of an n -variable operation derived from a binary operation. The second characterization is in terms of first order partial derivatives of the copula. The last characterization uses diagonal generators, which are “regular” diagonal sections of copulas, enabling one to recover the copulas by means of an asymptotic representation.

How to cite

top

Wysocki, Włodzimierz. "Characterizations of Archimedean $n$-copulas." Kybernetika 51.2 (2015): 212-230. <http://eudml.org/doc/270090>.

@article{Wysocki2015,
abstract = {We present three characterizations of $n$-dimensional Archimedean copulas: algebraic, differential and diagonal. The first is due to Jouini and Clemen. We formulate it in a more general form, in terms of an $n$-variable operation derived from a binary operation. The second characterization is in terms of first order partial derivatives of the copula. The last characterization uses diagonal generators, which are “regular” diagonal sections of copulas, enabling one to recover the copulas by means of an asymptotic representation.},
author = {Wysocki, Włodzimierz},
journal = {Kybernetika},
keywords = {Archimedean operation; additive generator; diagonal generator; multiplicative generator; (Archimedean) $n$-copula; (Archimedean) $n$-quasicopula; Archimedean operation; additive generator; diagonal generator; multiplicative generator; (Archimedean) $n$-copula; (Archimedean) $n$-quasicopula},
language = {eng},
number = {2},
pages = {212-230},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Characterizations of Archimedean $n$-copulas},
url = {http://eudml.org/doc/270090},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Wysocki, Włodzimierz
TI - Characterizations of Archimedean $n$-copulas
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 2
SP - 212
EP - 230
AB - We present three characterizations of $n$-dimensional Archimedean copulas: algebraic, differential and diagonal. The first is due to Jouini and Clemen. We formulate it in a more general form, in terms of an $n$-variable operation derived from a binary operation. The second characterization is in terms of first order partial derivatives of the copula. The last characterization uses diagonal generators, which are “regular” diagonal sections of copulas, enabling one to recover the copulas by means of an asymptotic representation.
LA - eng
KW - Archimedean operation; additive generator; diagonal generator; multiplicative generator; (Archimedean) $n$-copula; (Archimedean) $n$-quasicopula; Archimedean operation; additive generator; diagonal generator; multiplicative generator; (Archimedean) $n$-copula; (Archimedean) $n$-quasicopula
UR - http://eudml.org/doc/270090
ER -

References

top
  1. Alsina, C., Nelsen, R. B., Schweizer, B., 10.1016/0167-7152(93)90001-y, Statist. Probab. Lett. 17 (1993), 85-89. Zbl0798.60023MR1223530DOI10.1016/0167-7152(93)90001-y
  2. Cuculescu, I., Theodorescu, R., Copulas: diagonals, tracks., Rev. Roumaine Math. Pures Appl. 46 (2001), 731-742. Zbl1032.60009MR1929521
  3. Dudek, W. A., Trokhimenko, V. S., Menger algebras of multiplace functions., Universitatea de Stat din Moldova, Chişinău, 2006 (in Russian). Zbl1115.08001MR2292134
  4. Durante, F., Sempi, C., 10.1007/978-3-642-12465-5_1, In: Workshop on Copula Theory and its Applications (P. Jaworski et al. eds.), Lecture Notes in Statist. Proc. 198, Springer 2010, pp. 3-31. MR3051261DOI10.1007/978-3-642-12465-5_1
  5. sciences, Encyclopedia of statistical, Vol. 2, second edition., Wiley 2006, pp. 1363-1367. 
  6. Fang, K. T., Fang, B. Q., 10.1016/0047-259x(88)90105-4, J. Multivariate Anal. 24 (1998), 109-122. Zbl0635.62035MR0925133DOI10.1016/0047-259x(88)90105-4
  7. Feller, W., An introduction to probability theory and its applications. Vol. II, second edition., Wiley, New York 1971. MR0270403
  8. Genest, C., MacKay, J., 10.2307/3314660, Canad. J. Statist. 14 (1986), 145-159. MR0849869DOI10.2307/3314660
  9. Genest, C., MacKay, J., 10.1080/00031305.1986.10475414, Amer. Statist. 40 (1986), 280-285. MR0866908DOI10.1080/00031305.1986.10475414
  10. Genest, C., Quesada-Molina, L. J., Rodríguez-Lallena, J. A., Sempi, C., 10.1006/jmva.1998.1809, J. Multivariate Anal. 69 (1999), 193-205. MR1703371DOI10.1006/jmva.1998.1809
  11. Gluskin, L. M., Positional operatives., Dokl. Akad. Nauk SSSR 157 (1964), 767-770 (in Russian). Zbl0294.08001MR0164915
  12. Gluskin, L. M., Positional operatives., Mat. Sb. (N.S.) 68 (110) (1965), 444-472 (in Russian). Zbl0294.08001MR0193040
  13. Gluskin, L. M., Positional operatives., Dokl. Akad. Nauk SSSR 182 (1968), 1000-1003 (in Russian). Zbl0294.08001MR0240233
  14. Hutchinson, T. P., Lai, C. D., Continuous bivariate distributions. Emphasising applications., Rumsby Scientific, Adelaide 1990. Zbl1170.62330MR1070715
  15. Jaworski, P., 10.1016/j.ins.2008.09.006, Inform. Sci. 179 (2009), 2863-2871. Zbl1171.62332MR2547755DOI10.1016/j.ins.2008.09.006
  16. Joe, H., 10.1002/(sici)1097-0258(19980930)17:18<2154::aid-sim913>3.0.co;2-r, Chapman and Hall, London 1997. Zbl0990.62517MR1462613DOI10.1002/(sici)1097-0258(19980930)17:18<2154::aid-sim913>3.0.co;2-r
  17. Jouini, M. N., Clemen, R. T., 10.1287/opre.44.3.444, Oper. Research 44 (1996), 444-457. Zbl0864.90067DOI10.1287/opre.44.3.444
  18. Kimberling, C. H., 10.1007/bf01832852, Aequationes Math. 10 (1974), 152-164. Zbl0309.60012MR0353416DOI10.1007/bf01832852
  19. Kuczma, M., Functional equations in a single variable., Monografie Mat. 46, PWN, Warszawa 1968. Zbl0725.39003MR0228862
  20. Ling, C. H., Representation of associative functions., Publ. Math. Debrecen 12 (1965), 189-212. Zbl0137.26401MR0190575
  21. McNeil, A. J., Nešlehová, J., 10.1214/07-aos556, Ann. Statist. 37 (2009), 3059-3097. MR2541455DOI10.1214/07-aos556
  22. Nelsen, R. B., 10.1007/0-387-28678-0, Springer, 2006. Zbl1152.62030MR2197664DOI10.1007/0-387-28678-0
  23. Nelsen, R. B., Quesada-Molina, J. J., Rodr{í}guez-Lallena, J. A., Úbeda-Flores, M., 10.1007/978-94-017-0061-0_19, In: Distributions with given Marginals and Statistical Modelling. Kluwer, 2002, pp. 179-185. Zbl1135.62338MR2058991DOI10.1007/978-94-017-0061-0_19
  24. Rüschendorf, L., 10.1007/978-3-642-33590-7, Springer, 2013 (Chapter 1). Zbl1266.91001MR3051756DOI10.1007/978-3-642-33590-7
  25. Stupňanová, A., Kolesárová, A., Associative n -dimensional copulas., Kybernetika 47 (2011), 93-99. Zbl1225.03071MR2807866
  26. Sungur, E. A., Yang, Y., 10.1080/03610929608831791, Comm. Statist. Theory Methods 25 (1996), 1659-1676. Zbl0900.62339MR1411104DOI10.1080/03610929608831791
  27. Williamson, R. E., 10.1215/s0012-7094-56-02317-1, Duke Math. J. 23 (1956), 189-207. MR0077581DOI10.1215/s0012-7094-56-02317-1
  28. Wysocki, W., 10.1016/j.spl.2012.01.008, Statist. Probab. Lett. 82 (2012), 818-826. Zbl1242.62041MR2899525DOI10.1016/j.spl.2012.01.008
  29. Wysocki, W., 10.1016/j.spl.2012.01.008, Statist. Probab. Lett. 83 (2013), 37-45. MR2998721DOI10.1016/j.spl.2012.01.008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.