Characterizations of Archimedean -copulas
Kybernetika (2015)
- Volume: 51, Issue: 2, page 212-230
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topWysocki, Włodzimierz. "Characterizations of Archimedean $n$-copulas." Kybernetika 51.2 (2015): 212-230. <http://eudml.org/doc/270090>.
@article{Wysocki2015,
abstract = {We present three characterizations of $n$-dimensional Archimedean copulas: algebraic, differential and diagonal. The first is due to Jouini and Clemen. We formulate it in a more general form, in terms of an $n$-variable operation derived from a binary operation. The second characterization is in terms of first order partial derivatives of the copula. The last characterization uses diagonal generators, which are “regular” diagonal sections of copulas, enabling one to recover the copulas by means of an asymptotic representation.},
author = {Wysocki, Włodzimierz},
journal = {Kybernetika},
keywords = {Archimedean operation; additive generator; diagonal generator; multiplicative generator; (Archimedean) $n$-copula; (Archimedean) $n$-quasicopula; Archimedean operation; additive generator; diagonal generator; multiplicative generator; (Archimedean) $n$-copula; (Archimedean) $n$-quasicopula},
language = {eng},
number = {2},
pages = {212-230},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Characterizations of Archimedean $n$-copulas},
url = {http://eudml.org/doc/270090},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Wysocki, Włodzimierz
TI - Characterizations of Archimedean $n$-copulas
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 2
SP - 212
EP - 230
AB - We present three characterizations of $n$-dimensional Archimedean copulas: algebraic, differential and diagonal. The first is due to Jouini and Clemen. We formulate it in a more general form, in terms of an $n$-variable operation derived from a binary operation. The second characterization is in terms of first order partial derivatives of the copula. The last characterization uses diagonal generators, which are “regular” diagonal sections of copulas, enabling one to recover the copulas by means of an asymptotic representation.
LA - eng
KW - Archimedean operation; additive generator; diagonal generator; multiplicative generator; (Archimedean) $n$-copula; (Archimedean) $n$-quasicopula; Archimedean operation; additive generator; diagonal generator; multiplicative generator; (Archimedean) $n$-copula; (Archimedean) $n$-quasicopula
UR - http://eudml.org/doc/270090
ER -
References
top- Alsina, C., Nelsen, R. B., Schweizer, B., 10.1016/0167-7152(93)90001-y, Statist. Probab. Lett. 17 (1993), 85-89. Zbl0798.60023MR1223530DOI10.1016/0167-7152(93)90001-y
- Cuculescu, I., Theodorescu, R., Copulas: diagonals, tracks., Rev. Roumaine Math. Pures Appl. 46 (2001), 731-742. Zbl1032.60009MR1929521
- Dudek, W. A., Trokhimenko, V. S., Menger algebras of multiplace functions., Universitatea de Stat din Moldova, Chişinău, 2006 (in Russian). Zbl1115.08001MR2292134
- Durante, F., Sempi, C., 10.1007/978-3-642-12465-5_1, In: Workshop on Copula Theory and its Applications (P. Jaworski et al. eds.), Lecture Notes in Statist. Proc. 198, Springer 2010, pp. 3-31. MR3051261DOI10.1007/978-3-642-12465-5_1
- sciences, Encyclopedia of statistical, Vol. 2, second edition., Wiley 2006, pp. 1363-1367.
- Fang, K. T., Fang, B. Q., 10.1016/0047-259x(88)90105-4, J. Multivariate Anal. 24 (1998), 109-122. Zbl0635.62035MR0925133DOI10.1016/0047-259x(88)90105-4
- Feller, W., An introduction to probability theory and its applications. Vol. II, second edition., Wiley, New York 1971. MR0270403
- Genest, C., MacKay, J., 10.2307/3314660, Canad. J. Statist. 14 (1986), 145-159. MR0849869DOI10.2307/3314660
- Genest, C., MacKay, J., 10.1080/00031305.1986.10475414, Amer. Statist. 40 (1986), 280-285. MR0866908DOI10.1080/00031305.1986.10475414
- Genest, C., Quesada-Molina, L. J., Rodríguez-Lallena, J. A., Sempi, C., 10.1006/jmva.1998.1809, J. Multivariate Anal. 69 (1999), 193-205. MR1703371DOI10.1006/jmva.1998.1809
- Gluskin, L. M., Positional operatives., Dokl. Akad. Nauk SSSR 157 (1964), 767-770 (in Russian). Zbl0294.08001MR0164915
- Gluskin, L. M., Positional operatives., Mat. Sb. (N.S.) 68 (110) (1965), 444-472 (in Russian). Zbl0294.08001MR0193040
- Gluskin, L. M., Positional operatives., Dokl. Akad. Nauk SSSR 182 (1968), 1000-1003 (in Russian). Zbl0294.08001MR0240233
- Hutchinson, T. P., Lai, C. D., Continuous bivariate distributions. Emphasising applications., Rumsby Scientific, Adelaide 1990. Zbl1170.62330MR1070715
- Jaworski, P., 10.1016/j.ins.2008.09.006, Inform. Sci. 179 (2009), 2863-2871. Zbl1171.62332MR2547755DOI10.1016/j.ins.2008.09.006
- Joe, H., 10.1002/(sici)1097-0258(19980930)17:18<2154::aid-sim913>3.0.co;2-r, Chapman and Hall, London 1997. Zbl0990.62517MR1462613DOI10.1002/(sici)1097-0258(19980930)17:18<2154::aid-sim913>3.0.co;2-r
- Jouini, M. N., Clemen, R. T., 10.1287/opre.44.3.444, Oper. Research 44 (1996), 444-457. Zbl0864.90067DOI10.1287/opre.44.3.444
- Kimberling, C. H., 10.1007/bf01832852, Aequationes Math. 10 (1974), 152-164. Zbl0309.60012MR0353416DOI10.1007/bf01832852
- Kuczma, M., Functional equations in a single variable., Monografie Mat. 46, PWN, Warszawa 1968. Zbl0725.39003MR0228862
- Ling, C. H., Representation of associative functions., Publ. Math. Debrecen 12 (1965), 189-212. Zbl0137.26401MR0190575
- McNeil, A. J., Nešlehová, J., 10.1214/07-aos556, Ann. Statist. 37 (2009), 3059-3097. MR2541455DOI10.1214/07-aos556
- Nelsen, R. B., 10.1007/0-387-28678-0, Springer, 2006. Zbl1152.62030MR2197664DOI10.1007/0-387-28678-0
- Nelsen, R. B., Quesada-Molina, J. J., Rodr{í}guez-Lallena, J. A., Úbeda-Flores, M., 10.1007/978-94-017-0061-0_19, In: Distributions with given Marginals and Statistical Modelling. Kluwer, 2002, pp. 179-185. Zbl1135.62338MR2058991DOI10.1007/978-94-017-0061-0_19
- Rüschendorf, L., 10.1007/978-3-642-33590-7, Springer, 2013 (Chapter 1). Zbl1266.91001MR3051756DOI10.1007/978-3-642-33590-7
- Stupňanová, A., Kolesárová, A., Associative -dimensional copulas., Kybernetika 47 (2011), 93-99. Zbl1225.03071MR2807866
- Sungur, E. A., Yang, Y., 10.1080/03610929608831791, Comm. Statist. Theory Methods 25 (1996), 1659-1676. Zbl0900.62339MR1411104DOI10.1080/03610929608831791
- Williamson, R. E., 10.1215/s0012-7094-56-02317-1, Duke Math. J. 23 (1956), 189-207. MR0077581DOI10.1215/s0012-7094-56-02317-1
- Wysocki, W., 10.1016/j.spl.2012.01.008, Statist. Probab. Lett. 82 (2012), 818-826. Zbl1242.62041MR2899525DOI10.1016/j.spl.2012.01.008
- Wysocki, W., 10.1016/j.spl.2012.01.008, Statist. Probab. Lett. 83 (2013), 37-45. MR2998721DOI10.1016/j.spl.2012.01.008
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.