Proving the characterization of Archimedean copulas via Dini derivatives

Juan Fernández-Sánchez; Manuel Úbeda-Flores

Kybernetika (2016)

  • Volume: 52, Issue: 5, page 785-790
  • ISSN: 0023-5954

Abstract

top
In this note we prove the characterization of the class of Archimedean copulas by using Dini derivatives.

How to cite

top

Fernández-Sánchez, Juan, and Úbeda-Flores, Manuel. "Proving the characterization of Archimedean copulas via Dini derivatives." Kybernetika 52.5 (2016): 785-790. <http://eudml.org/doc/287591>.

@article{Fernández2016,
abstract = {In this note we prove the characterization of the class of Archimedean copulas by using Dini derivatives.},
author = {Fernández-Sánchez, Juan, Úbeda-Flores, Manuel},
journal = {Kybernetika},
keywords = {Archimedean copula; derived number; Dini derivative; Archimedean copula; derived number; Dini derivative},
language = {eng},
number = {5},
pages = {785-790},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Proving the characterization of Archimedean copulas via Dini derivatives},
url = {http://eudml.org/doc/287591},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Fernández-Sánchez, Juan
AU - Úbeda-Flores, Manuel
TI - Proving the characterization of Archimedean copulas via Dini derivatives
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 5
SP - 785
EP - 790
AB - In this note we prove the characterization of the class of Archimedean copulas by using Dini derivatives.
LA - eng
KW - Archimedean copula; derived number; Dini derivative; Archimedean copula; derived number; Dini derivative
UR - http://eudml.org/doc/287591
ER -

References

top
  1. Alsina, C., Frank, M. J., Schweizer, B., 10.1142/9789812774200, World Scientific, Singapore 2006. Zbl1100.39023MR2222258DOI10.1142/9789812774200
  2. Amo, E. de, Carrillo, M. Díaz, Sánchez, J. Fernández, 10.1016/j.fss.2011.10.005, Fuzzy Sets Syst. 191 (2012), 103-112. MR2874826DOI10.1016/j.fss.2011.10.005
  3. Berg, L., Krüppel, M., 10.4171/zaa/947, Z. Anal. Anw. 19 (2000), 227-237. MR1748045DOI10.4171/zaa/947
  4. Cherubini, U., Luciano, E., Vecchiato, W., 10.1002/9781118673331, Wiley Finance Series, John Wiley and Sons Ltd., Chichester 2004. Zbl1163.62081MR2250804DOI10.1002/9781118673331
  5. Durante, F., Jaworski, P., 10.1080/03610920903151459, Comm. Statist. Theory Methods 39 (2010), 2901-2912. Zbl1203.62101MR2755533DOI10.1080/03610920903151459
  6. Durante, F., Sempi, C., 10.1201/b18674, Chapman and Hall/CRC, London 2015. MR3443023DOI10.1201/b18674
  7. Genest, C., MacKay, J., 10.2307/3314660, Canad. J. Statist. 14 (1986), 145-159. Zbl0605.62049MR0849869DOI10.2307/3314660
  8. Hagood, J. W., Thomson, B. S., 10.2307/27641835, Amer. Math. Monthly 113 (2006), 34-46. Zbl1132.26321MR2202919DOI10.2307/27641835
  9. Jaworski, P., Durante, F., Härdle, W., (editors), T. Rychlik, 10.1007/978-3-642-12465-5, Lecture Notes in Statistics-Proceedings, Springer, Berlin-Heidelberg 2010. MR3075361DOI10.1007/978-3-642-12465-5
  10. Ling, C. H., Representation of associative functions., Publ. Math. Debrecen 12 (1965), 189-212. Zbl0137.26401MR0190575
  11. Łojasiewicz, S., An Introduction to the Theory of Real Functions. Third Edition., A Wiley-Interscience Publication, John Wiley and Sons Ltd., Chichester 1988. MR0952856
  12. McNeil, A. J., Nešlehová, J., 10.1214/07-aos556, Ann. Stat. 37 (2009), 3059-3097. MR2541455DOI10.1214/07-aos556
  13. McNeil, A. J., Frey, R., Embrechts, P., Quantitative Risk Management: Concepts, Techniques, and Tools., Princeton University Press, Princeton 2005. Zbl1347.00025MR2175089
  14. Natanson, L. P., Theory of Functions of a Real Variable. Vol. I, revised edition., Frederick Ungar Publishing, New York 1961. MR0148805
  15. Nelsen, R. B., 10.1007/0-387-28678-0, Springer, New York 2006. MR2197664DOI10.1007/0-387-28678-0
  16. Schweizer, B., Sklar, A., Probabilistic Metric Spaces., North-Holland, New York 1983. Reprinted, Dover, Mineola NY, 2005. Zbl0546.60010MR0790314
  17. Sklar, A., Fonctions de répartition à n dimensions et leurs marges., Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. MR0125600
  18. Wysocki, W., 10.14736/kyb-2015-2-0212, Kybernetika 51 (2015), 212-230. Zbl1340.62054MR3350557DOI10.14736/kyb-2015-2-0212

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.