The Sturm-Liouville Friedrichs extension

Siqin Yao; Jiong Sun; Anton Zettl

Applications of Mathematics (2015)

  • Volume: 60, Issue: 3, page 299-320
  • ISSN: 0862-7940

Abstract

top
The characterization of the domain of the Friedrichs extension as a restriction of the maximal domain is well known. It depends on principal solutions. Here we establish a characterization as an extension of the minimal domain. Our proof is different and closer in spirit to the Friedrichs construction. It starts with the assumption that the minimal operator is bounded below and does not directly use oscillation theory.

How to cite

top

Yao, Siqin, Sun, Jiong, and Zettl, Anton. "The Sturm-Liouville Friedrichs extension." Applications of Mathematics 60.3 (2015): 299-320. <http://eudml.org/doc/270094>.

@article{Yao2015,
abstract = {The characterization of the domain of the Friedrichs extension as a restriction of the maximal domain is well known. It depends on principal solutions. Here we establish a characterization as an extension of the minimal domain. Our proof is different and closer in spirit to the Friedrichs construction. It starts with the assumption that the minimal operator is bounded below and does not directly use oscillation theory.},
author = {Yao, Siqin, Sun, Jiong, Zettl, Anton},
journal = {Applications of Mathematics},
keywords = {Sturm-Liouville operator; Friedrichs extension; Sturm-Liouville operator; Friedrichs extension},
language = {eng},
number = {3},
pages = {299-320},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Sturm-Liouville Friedrichs extension},
url = {http://eudml.org/doc/270094},
volume = {60},
year = {2015},
}

TY - JOUR
AU - Yao, Siqin
AU - Sun, Jiong
AU - Zettl, Anton
TI - The Sturm-Liouville Friedrichs extension
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 299
EP - 320
AB - The characterization of the domain of the Friedrichs extension as a restriction of the maximal domain is well known. It depends on principal solutions. Here we establish a characterization as an extension of the minimal domain. Our proof is different and closer in spirit to the Friedrichs construction. It starts with the assumption that the minimal operator is bounded below and does not directly use oscillation theory.
LA - eng
KW - Sturm-Liouville operator; Friedrichs extension; Sturm-Liouville operator; Friedrichs extension
UR - http://eudml.org/doc/270094
ER -

References

top
  1. Friedrichs, K., Spektraltheorie halbbeschränkter Operatoren und Anwendungen auf die Spektralzerlegung von Differentialoperatoren I, II, German Math. Ann. 109 (1934), 465-487 Berichtigung ibid. 110 (1935), 777-779. (1935) MR1512905
  2. Friedrichs, K., 10.1007/BF01565401, Math. Ann. German 112 (1936), 1-23. (1936) MR1513033DOI10.1007/BF01565401
  3. Hao, X., Sun, J., Wang, A., Zettl, A., 10.1007/s00025-011-0096-y, Result. Math. 61 (2012), 255-281. (2012) Zbl1290.47046MR2925120DOI10.1007/s00025-011-0096-y
  4. Hao, X., Sun, J., Zettl, A., 10.1016/j.jmaa.2010.11.052, J. Math. Anal. Appl. 376 (2011), 696-712. (2011) Zbl1210.47087MR2747790DOI10.1016/j.jmaa.2010.11.052
  5. Kalf, H., 10.1112/jlms/s2-17.3.511, J. Lond. Math. Soc., II. Ser. 17 (1978), 511-521. (1978) Zbl0406.34029MR0492493DOI10.1112/jlms/s2-17.3.511
  6. Littlejohn, L. L., Zettl, A., The Legendre equation and its self-adjoint operators, Electron. J. Differ. Equ. (electronic only) 2011 (2011), 33 pages. (2011) MR2821514
  7. Marletta, M., Zettl, A., 10.1006/jdeq.1999.3685, J. Differ. Equations 160 (2000), 404-421. (2000) Zbl0954.47012MR1736997DOI10.1006/jdeq.1999.3685
  8. Möller, M., Zettl, A., 10.1006/jdeq.1995.1002, J. Differ. Equations 115 (1995), 24-49. (1995) Zbl0817.34047MR1308603DOI10.1006/jdeq.1995.1002
  9. Naimark, M. A., Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space, Frederick Ungar Publishing, New York (1968). (1968) Zbl0227.34020MR0262880
  10. Niessen, H.-D., Zettl, A., 10.1017/S0308210500024409, Proc. R. Soc. Edinb., Sect. A 114 (1990), 229-236. (1990) Zbl0712.34020MR1055546DOI10.1017/S0308210500024409
  11. Niessen, H.-D., Zettl, A., 10.1112/plms/s3-64.3.545, Proc. Lond. Math. Soc., III. Ser. 64 (1992), 545-578. (1992) Zbl0768.34015MR1152997DOI10.1112/plms/s3-64.3.545
  12. Rellich, F., 10.1007/BF01342848, Math. Ann. 122 (1950/51), German 343-368. (1950) MR0043316DOI10.1007/BF01342848
  13. Rosenberger, R., Characterization of the Friedrichs extension of semi-bounded Sturm-Liouville operators, Fachbereich Mathematik der Technischen Hochschule Darmstadt Dissertation (1984), German. (1984) Zbl0676.47027
  14. Wang, A., Sun, J., Zettl, A., Characterization of domains of self-adjoint ordinary differential operators, J. Differ. Equations (2009), 246 1600-1622. (2009) Zbl1169.47033MR2488698
  15. Weidmann, J., Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics 68 Springer, Berlin (1980). (1980) Zbl0434.47001MR0566954
  16. Zettl, A., Sturm-Liouville Theory, Mathematical Surveys and Monographs 121 American Mathematical Society, Providence (2005). (2005) Zbl1103.34001MR2170950

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.