A spectral bound for graph irregularity
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 2, page 375-379
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Abdo, H., Cohen, N., Dimitrov, D., Bounds and computation of irregularity of a graph, Preprint: http://arxiv.org/abs/1207.4804 (2012). (2012)
- Albertson, M. O., The irregularity of a graph, Ars Comb. 46 (1997), 219-225. (1997) Zbl0933.05073MR1470801
- Fath-Tabar, G. H., Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011), 79-84. (2011) Zbl1265.05146MR2797217
- Fiedler, M., A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czech. Math. J. 25 (1975), 619-633. (1975) Zbl0437.15004MR0387321
- Hansen, P., Mélot, H., Variable neighborhood search for extremal graphs. IX: Bounding the irregularity of a graph, Graphs and Discovery S. Fajtolowicz et al. Proc. DIMACS working group, Piscataway, USA, 2001. DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 69, AMS Providence 253-264 (2005). (2005) Zbl1095.05019MR2193452
- Henning, M. A., Rautenbach, D., 10.1016/j.disc.2006.09.038, Discrete Math. 307 (2007), 1467-1472. (2007) Zbl1126.05060MR2311120DOI10.1016/j.disc.2006.09.038
- Merris, R., A note on Laplacian graph eigenvalues, Linear Algebra Appl. 285 (1998), 33-35. (1998) Zbl0931.05053MR1653479
- Merris, R., Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197-198 (1994), 143-176. (1994) Zbl0802.05053MR1275613
- Mohar, B., Some applications of Laplace eigenvalues of graphs, Graph Symmetry: Algebraic Methods and Applications G. Hahn et al. Proc. NATO Adv. Study Inst., Montréal, Canada, 1996. NATO ASI Ser., Ser. C, Math. Phys. Sci. 497, Kluwer Academic Publishers Dordrecht (1997), 225-275. (1997) Zbl0883.05096MR1468791
- Zhou, B., Luo, W., On irregularity of graphs, Ars Comb. 88 (2008), 55-64. (2008) Zbl1224.05110MR2426406