The extremal irregularity of connected graphs with given number of pendant vertices
Xiaoqian Liu; Xiaodan Chen; Junli Hu; Qiuyun Zhu
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 3, page 735-746
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Xiaoqian, et al. "The extremal irregularity of connected graphs with given number of pendant vertices." Czechoslovak Mathematical Journal 72.3 (2022): 735-746. <http://eudml.org/doc/298405>.
@article{Liu2022,
abstract = {The irregularity of a graph $G=(V, E)$ is defined as the sum of imbalances $|d_u-d_v|$ over all edges $uv\in E$, where $d_u$ denotes the degree of the vertex $u$ in $G$. This graph invariant, introduced by Albertson in 1997, is a measure of the defect of regularity of a graph. In this paper, we completely determine the extremal values of the irregularity of connected graphs with $n$ vertices and $p$ pendant vertices ($1\le p \le n-1$), and characterize the corresponding extremal graphs.},
author = {Liu, Xiaoqian, Chen, Xiaodan, Hu, Junli, Zhu, Qiuyun},
journal = {Czechoslovak Mathematical Journal},
keywords = {graph irregularity; connected graph; pendant vertex; extremal graph},
language = {eng},
number = {3},
pages = {735-746},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The extremal irregularity of connected graphs with given number of pendant vertices},
url = {http://eudml.org/doc/298405},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Liu, Xiaoqian
AU - Chen, Xiaodan
AU - Hu, Junli
AU - Zhu, Qiuyun
TI - The extremal irregularity of connected graphs with given number of pendant vertices
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 3
SP - 735
EP - 746
AB - The irregularity of a graph $G=(V, E)$ is defined as the sum of imbalances $|d_u-d_v|$ over all edges $uv\in E$, where $d_u$ denotes the degree of the vertex $u$ in $G$. This graph invariant, introduced by Albertson in 1997, is a measure of the defect of regularity of a graph. In this paper, we completely determine the extremal values of the irregularity of connected graphs with $n$ vertices and $p$ pendant vertices ($1\le p \le n-1$), and characterize the corresponding extremal graphs.
LA - eng
KW - graph irregularity; connected graph; pendant vertex; extremal graph
UR - http://eudml.org/doc/298405
ER -
References
top- Abdo, H., Cohen, N., Dimitrov, D., 10.2298/FIL1407315A, Filomat 28 (2014), 1315-1322. (2014) Zbl1464.05048MR3360039DOI10.2298/FIL1407315A
- Abdo, H., Dimitrov, D., 10.7151/dmgt.1733, Discuss. Math., Graph Theory 34 (2014), 263-278. (2014) Zbl1290.05062MR3194036DOI10.7151/dmgt.1733
- Albertson, M. O., The irregularity of a graph, Ars Comb. 46 (1997), 219-225. (1997) Zbl0933.05073MR1470801
- Albertson, M. O., Berman, D. M., Ramsey graphs without repeated degrees, Proceedings of the Twenty-Second Southeastern Conference on Combinatorics, Graph Theory, and Computing Congressus Numerantium 83. Utilitas Mathematica Publishing, Winnipeg (1991), 91-96. (1991) Zbl0765.05073MR1152082
- Chen, X., Hou, Y., Lin, F., 10.1016/j.amc.2017.09.038, Appl. Math. Comput. 320 (2018), 331-340. (2018) Zbl1426.05088MR3722748DOI10.1016/j.amc.2017.09.038
- Dimitrov, D., Réti, T., Graphs with equal irregularity indices, Acta Polytech. Hung. 11 (2014), 41-57. (2014)
- Dimitrov, D., Škrekovski, R., 10.26493/1855-3974.341.bab, Ars Math. Contemp. 9 (2015), 45-50. (2015) Zbl1332.05037MR3377090DOI10.26493/1855-3974.341.bab
- Fath-Tabar, G. H., Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011), 79-84. (2011) Zbl1265.05146MR2797217
- Goldberg, F., 10.1007/s10587-015-0182-5, Czech. Math. J. 65 (2015), 375-379. (2015) Zbl1349.05181MR3360433DOI10.1007/s10587-015-0182-5
- Gutman, I., 10.5937/KgJSci1638071G, Kragujevac J. Sci. 38 (2016), 71-81. (2016) DOI10.5937/KgJSci1638071G
- Gutman, I., Hansen, P., Mélot, H., 10.1021/ci0342775, J. Chem. Inf. Model. 45 (2005), 222-230. (2005) DOI10.1021/ci0342775
- Hansen, P., Mélot, H., Variable neighborhood search for extremal graphs 9. Bounding the irregularity of a graph, Graphs and Discovery DIMACS Series in Discrete Mathematics and Theoretical Computer Science 69. AMS, Providence (2005), 253-264. (2005) Zbl1095.05019MR2193452
- Henning, M. A., Rautenbach, D., 10.1016/j.disc.2006.09.038, Discrete Math. 307 (2007), 1467-1472. (2007) Zbl1126.05060MR2311120DOI10.1016/j.disc.2006.09.038
- Liu, Y., Li, J., On the irregularity of cacti, Ars Comb. 143 (2019), 77-89. (2019) Zbl1449.05052MR3967495
- Luo, W., Zhou, B., On the irregularity of trees and unicyclic graphs with given matching number, Util. Math. 83 (2010), 141-147. (2010) Zbl1242.05223MR2742282
- Nasiri, R., Fath-Tabar, G. H., 10.1016/j.endm.2013.11.026, Extended Abstracts of the 5th Conference on Algebraic Combinatorics and Graph Theory (FCC) Electronic Notes in Discrete Mathematics 45. Elsevier, Amsterdam (2014), 133-140. (2014) Zbl1338.05049DOI10.1016/j.endm.2013.11.026
- Rautenbach, D., Volkmann, L., 10.1002/jgt.10043, J. Graph Theory 41 (2002), 18-23. (2002) Zbl1019.05034MR1919164DOI10.1002/jgt.10043
- Réti, T., 10.1016/j.amc.2018.10.010, Appl. Math. Comput. 344-345 (2019), 107-115. (2019) Zbl1428.05086MR3886406DOI10.1016/j.amc.2018.10.010
- Réti, T., Sharafdini, R., Drégelyi-Kiss, Á., Haghbin, H., Graph irregularity indices used as molecular descriptors in QSPR studies, MATCH Commun. Math. Comput. Chem. 79 (2018), 509-524. (2018) Zbl1472.92338MR3754230
- Tavakoli, M., Rahbarnia, F., Mirzavaziri, M., Ashrafi, A. R., Gutman, I., Extremely irregular graphs, Kragujevac J. Math. 37 (2013), 135-139. (2013) Zbl1299.05060MR3073703
- Vukičević, D., Gašperov, M., Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta 83 (2010), 243-260. (2010)
- Zhou, B., Luo, W., On irregularity of graphs, Ars Comb. 88 (2008), 55-64. (2008) Zbl1224.05110MR2426406
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.