Evolution equations governed by Lipschitz continuous non-autonomous forms
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 2, page 475-491
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSani, Ahmed, and Laasri, Hafida. "Evolution equations governed by Lipschitz continuous non-autonomous forms." Czechoslovak Mathematical Journal 65.2 (2015): 475-491. <http://eudml.org/doc/270101>.
@article{Sani2015,
abstract = {We prove $L^2$-maximal regularity of the linear non-autonomous evolutionary Cauchy problem\[ \dot\{u\} (t)+A(t)u(t)=f(t) \quad \text\{for a.e.\ \} t\in [0,T],\quad u(0)=u\_0, \]
where the operator $A(t)$ arises from a time depending sesquilinear form $\mathfrak \{a\}(t,\cdot ,\cdot )$ on a Hilbert space $H$ with constant domain $V.$ We prove the maximal regularity in $H$ when these forms are time Lipschitz continuous. We proceed by approximating the problem using the frozen coefficient method developed by El-Mennaoui, Keyantuo, Laasri (2011), El-Mennaoui, Laasri (2013), and Laasri (2012). As a consequence, we obtain an invariance criterion for convex and closed sets of $H.$},
author = {Sani, Ahmed, Laasri, Hafida},
journal = {Czechoslovak Mathematical Journal},
keywords = {sesquilinear form; non-autonomous evolution equation; maximal regularity; convex set},
language = {eng},
number = {2},
pages = {475-491},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Evolution equations governed by Lipschitz continuous non-autonomous forms},
url = {http://eudml.org/doc/270101},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Sani, Ahmed
AU - Laasri, Hafida
TI - Evolution equations governed by Lipschitz continuous non-autonomous forms
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 475
EP - 491
AB - We prove $L^2$-maximal regularity of the linear non-autonomous evolutionary Cauchy problem\[ \dot{u} (t)+A(t)u(t)=f(t) \quad \text{for a.e.\ } t\in [0,T],\quad u(0)=u_0, \]
where the operator $A(t)$ arises from a time depending sesquilinear form $\mathfrak {a}(t,\cdot ,\cdot )$ on a Hilbert space $H$ with constant domain $V.$ We prove the maximal regularity in $H$ when these forms are time Lipschitz continuous. We proceed by approximating the problem using the frozen coefficient method developed by El-Mennaoui, Keyantuo, Laasri (2011), El-Mennaoui, Laasri (2013), and Laasri (2012). As a consequence, we obtain an invariance criterion for convex and closed sets of $H.$
LA - eng
KW - sesquilinear form; non-autonomous evolution equation; maximal regularity; convex set
UR - http://eudml.org/doc/270101
ER -
References
top- Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F., Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics 96 Birkhäuser, Basel (2011). (2011) Zbl1226.34002MR2798103
- Arendt, W., Chill, R., Global existence for quasilinear diffusion equations in isotropic nondivergence form, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 523-539. (2010) Zbl1223.35202MR2722654
- Arendt, W., Dier, D., Laasri, H., Ouhabaz, E. M., Maximal regularity for evolution equations governed by non-autonomous forms, Adv. Differ. Equ. 19 (2014), 1043-1066. (2014) MR3250762
- Arendt, W., Dier, D., Ouhabaz, E. M., 10.1112/jlms/jdt082, J. Lond. Math. Soc., II. Ser. 89 (2014), 903-916. (2014) MR3217655DOI10.1112/jlms/jdt082
- Bardos, C., 10.1016/0022-1236(71)90038-3, J. Funct. Anal. 7 (1971), 311-322. (1971) Zbl0214.12302MR0283433DOI10.1016/0022-1236(71)90038-3
- Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer New York (2011). (2011) Zbl1220.46002MR2759829
- Dautray, R., Lions, J.-L., Analyse mathématique et calcul numérique pour les sciences et les techniques. Volume 8: Évolution: semi-groupe, variationnel, Collection Enseignement Masson, Paris French (1988). (1988) Zbl0749.35004MR1016604
- El-Mennaoui, O., Keyantuo, V., Laasri, H., Infinitesimal product of semigroups, Ulmer Seminare. Heft 16 (2011), 219-230. (2011)
- Haak, B., Maati, O. El, Maximal regularity for non-autonomous evolution equations, Version available at: http://arxiv.org/abs/1402.1136v1.
- Kato, T., Perturbation Theory for Linear Operators, Classics in Mathematics Springer, Berlin (1992). (1992) MR1335452
- Laasri, H., 10.1007/s00208-015-1199-7, Thèse de Doctorat Faculté des science, Agadir (2012), French DOI 10.1007/s00208-015-1199-7. (2012) DOI10.1007/s00208-015-1199-7
- Laasri, H., El-Mennaoui, O., 10.1007/s10587-013-0060-y, Czech. Math. J. 63 887-908 (2013). (2013) MR3165503DOI10.1007/s10587-013-0060-y
- Lions, J. L., Équations différentielles opérationnelles et problèmes aux limites, Die Grundlehren der mathematischen Wissenschaften 111 Springer, Berlin French (1961). (1961) Zbl0098.31101MR0153974
- Ouhabaz, E. M., Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005). (2005) Zbl1082.35003MR2124040
- Ouhabaz, E. M., 10.1007/BF00275797, Potential Anal. 5 (1996), 611-625. (1996) Zbl0868.47029MR1437587DOI10.1007/BF00275797
- Ouhabaz, E. M., Spina, C., 10.1016/j.jde.2009.10.004, J. Differ. Equations 248 (2010), 1668-1683. (2010) Zbl1190.35132MR2593603DOI10.1016/j.jde.2009.10.004
- Showalter, R. E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs 49, AMS Providence (1997). (1997) Zbl0870.35004MR1422252
- Slavík, A., Product Integration, Its History and Applications, Dějiny Matematiky/History of Mathematics 29; Nečas Center for Mathematical Modeling Lecture Notes 1 Matfyzpress, Praha (2007). (2007) Zbl1216.28001MR2917851
- Tanabe, H., Equations of Evolution, Monographs and Studies in Mathematics 6 Pitman, London (1979). (1979) Zbl0417.35003MR0533824
- Thomaschewski, S., Form Methods for Autonomous and Non-Autonomous Cauchy Problems, PhD Thesis, Universität Ulm (2003). (2003)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.